In this study, the main goal was to apply a multi-scale computational model in evaluating nano-sized drug-delivery systems, following extracellular drug release, into solid tumors in order to predict treatment efficacy. The impact of several parameters related to tumor (size, shape, vessel-wall pore size, and necrotic core size) and therapeutic agents (size of nanoparticles, binding affinity of drug, drug release rate from nanoparticles) are examined in detail. This study illustrates that achieving a higher treatment efficacy requires smaller nanoparticles (NPs) or a low binding affinity and drug release rate. Long-term analysis finds that a slow release rate in extracellular space does not always improve treatment efficacy compared with a rapid release rate; NP size as well as binding affinity of drug are also highly influential. The presented methodology can be used as a step forward towards optimization of patient-specific nanomedicine plans.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm-2021-0126DOI Listing

Publication Analysis

Top Keywords

release rate
16
drug release
12
treatment efficacy
12
binding affinity
12
affinity drug
12
solid tumors
8
drug
6
release
5
size
5
drug delivery
4

Similar Publications

Background: Although surviving sepsis campaign (SSC) guidelines are the standard for sepsis and septic shock management, outcomes are still unfavourable. Given that perfusion pressure in sepsis is heterogeneous among patients and within the same patient; we evaluated the impact of individualized hemodynamic management via the transcranial Doppler (TCD) pulsatility index (PI) on mortality and outcomes among sepsis-induced encephalopathy (SIE) patients.

Methods: In this prospective, single-center randomized controlled study, 112 patients with SIE were randomly assigned.

View Article and Find Full Text PDF

The plasticity of plant cells underlies their wide capacity to regenerate, with increasing evidence in plants and animals implicating cell-cycle dynamics in cellular reprogramming. To investigate the cell cycle during cellular reprogramming, we developed a comprehensive set of cell-cycle-phase markers in the Arabidopsis root. Using single-cell RNA sequencing profiles and live imaging during regeneration, we found that a subset of cells near an ablation injury dramatically increases division rate by truncating G1 phase.

View Article and Find Full Text PDF

The outbreak of cyanobacterial blooms poses an increasingly serious ecological challenge. Our previous study found that calcium peroxide (CaO) has a high inhibitory effect on cyanobacteria, along with a practical application potential in cyanobacteria-dominated lakes. In order to explore the sensitivity of aquatic ecosystems to CaO treatment, we conducted this study to elucidate the ecological impact of CaO on Vallisneria natans (V.

View Article and Find Full Text PDF

Breast cancer (BC) is a substantial reason for cancer-related mortality among women across the globe. Anastrozole (ANS) is an effective orally administered hormonal therapy for estrogen+ (ER+) BC treatment. However, several side effects and pharmacokinetic limitations restricted its uses in BC treatment.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate and compare the clinicopathologic features of primary fallopian tubal carcinoma (PFTC) and high-grade serous ovarian cancer (HGSOC) and explore the prognostic factors of these two malignant tumors.

Methods: Fifty-seven patients diagnosed with PFTC from 2006 to 2015 and 60 patients diagnosed with HGSOC from 2014 to 2015 with complete prognostic information were identified at Women's Hospital of Zhejiang University. The clinicopathological and surgical data were collected, and the survival of the patients was followed for 5 years after surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!