Photocatalytic Chemical Crosslinking for Profiling RNA-Protein Interactions in Living Cells.

Angew Chem Int Ed Engl

College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.

Published: July 2022

The dynamic interactions between RNAs and proteins play crucial roles in regulating diverse cellular processes. Proteome-wide characterization of these interactions in their native cellular context remains desirable but challenging. Herein, we developed a photocatalytic crosslinking (PhotoCAX) strategy coupled with mass spectrometry (PhotoCAX-MS) and RNA sequencing (PhotoCAX-seq) for the study of the composition and dynamics of protein-RNA interactions. By integrating the blue light-triggered photocatalyst with a dual-functional RNA-protein crosslinker (RP-linker) and the phase separation-based enrichment strategy, PhotoCAX-MS revealed a total of 2044 RBPs in human HEK293 cells. We further employed PhotoCAX to investigate the dynamic change of RBPome in macrophage cells upon LPS-stimulation, as well as the identification of RBPs interacting directly with the 5' untranslated regions of SARS-CoV-2 RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202202008DOI Listing

Publication Analysis

Top Keywords

photocatalytic chemical
4
chemical crosslinking
4
crosslinking profiling
4
profiling rna-protein
4
interactions
4
rna-protein interactions
4
interactions living
4
living cells
4
cells dynamic
4
dynamic interactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!