Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Structural analysis of beam-sensitive materials by transmission electron microscopy (TEM) represents a significant challenge, as high-resolution TEM (HRTEM) requires high electron doses that limit its applicability to stable inorganic materials. Beam-sensitive materials, e.g., organic crystals, must be imaged under low dose conditions, leading to problematic contrast interpretation and loss of fine structural details. Here, HRTEM imaging of organic crystalline materials with near-atomic resolution of up to 1.6 Å is described, which enables real-space studies of crystal structures, as well as observation of co-existing polymorphs, crystal defects, and atoms. This is made possible by a low-dose focal-series reconstruction methodology, which provides HRTEM images where contrast reflects true object structure and can be performed on contemporary cryo-EM instruments available to many research institutions. Copper phthalocyanine (CuPc), a perchlorinated analogue of CuPc, and indigo crystalline films are imaged. In the case of indigo crystals, co-existing polymorphs and individual atoms (carbonyl oxygen) can be observed. In the case of CuPc, several polymorphs are observed, including a new one, for which the crystal structure is found based on direct in-focus imaging, accomplishing real-space crystal structure elucidation. Such direct analysis can be transformative for structure studies of organic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202202088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!