Vaccines are one of the greatest medical achievements of modern medicine. The nasal mucosa represents an effective route of vaccination for both mucosal immunity and peripheral, being at the same time an inductive and effector site of immunity. In this paper, the innovative and patented compositions and manufacturing procedures of nanomaterials have been studied using the peerreviewed research literature. Nanomaterials have several properties that make them unique as adjuvant for vaccines. Nanoadjuvants through the influence of antigen availability over time affect the immune response. Namely, the amount of antigen reaching the immune system or its release over prolonged periods of time can be effectively increased by nanoadjuvants. Mucosal vaccines are an interesting alternative for immunization of diseases in which pathogens access the body through these epithelia. Nanometric adjuvants are not only a viable approach to improve the efficacy of nasal vaccines but in most of the cases they represent the core of the intellectual property related to the innovative vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184237 | PMC |
http://dx.doi.org/10.2174/2667387816666220420124648 | DOI Listing |
JCI Insight
January 2025
Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
Background: The immunogenicity of current influenza vaccines need improvement. Inactivated influenza and COVID-19 mRNA vaccines can be co-administered but randomized controlled trial data is lacking on whether the two vaccines are more immunogenic if given in the same or opposite arms. Murine studies suggest mRNA vaccines can adjuvant influenza vaccines when co-formulated and delivered together.
View Article and Find Full Text PDFImmunology
January 2025
Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.
Enterovirus A71 (EV-A71) has caused hand, foot, and mouth disease with an increased prevalence of neurological complications and acute mortality, threatening young children around the globe. By provoking mucosal immunity, intranasal vaccination has been suggested to prevent EV-A71 infection. However, antigens delivered via the nasal route usually fail to induce a protective memory response.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Background: Understanding protection against SARS-CoV-2 infection by vaccine and hybrid immunity is important for informing public health strategies as new variants emerge.
Methods: We analyzed data from three cohort studies spanning September 1, 2022-July 31, 2023, to estimate COVID-19 vaccine effectiveness (VE) against SARS-CoV-2 infection and symptomatic COVID-19 among adults with and without prior infection in the United States. Participants collected weekly nasal swabs, irrespective of symptoms, annual blood draws, and completed periodic surveys, which included vaccination status and prior infection history.
Viruses
November 2024
Virology Laboratory, Nacional Institute of Agrarian and Veterinarian Research, Quinta Do Marquês, Av. da República, 2780-157 Oeiras, Portugal.
Vaccines (Basel)
November 2024
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
[Background/Objectives] () is widespread in the global swine industry, leading to significant economic losses, and is particularly severe in native Chinese pig breeds. The Ningxiang pig, a well-known native breed in China, is susceptible to , exhibiting high morbidity and mortality rates. This study was designed to evaluate the clinical effectiveness of the live vaccine (strain 168).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!