Aims: This study aimed to recommend a novel way for the preparation of carbohydrates containing triazole derivatives.

Background: Triazoles containing derivatives have numerous biological activities. Ball milling is a fast, modest, green process with massive potential. One of the greatest interesting applications of this technique is in the arena of heterocycles.

Objective: Solvent-free click reactions are facilitated via the activation of copper powder using a ball milling mechanochemical procedure. An optimization study of parameters affecting the reaction rate, such as reaction time, size, and milling ball number, has been conducted. Different substrates have been tested using this adopted procedure considering in all cases, in high yields and purity, the corresponding chiral optically pure five-membered glycoconjugates containing 1,2,3-triazole.

Methods: Three milling balls of 10 mm in diameter were placed in the milling jar (50 mL; stainless steel). 1 mmol of alkyne, 2 mmol of azide, and 1 mmol of Cu powder (63 mg) were added, respectively, in the presented order. Milling was assured for 25 min at 650 rpm deprived of solvent.

Results: The cycloaddition results and the deprotection of the cycloadducts were affected by the selection of the protective groups. Cleavage of the acetyl protecting groups provided water-soluble triazoles. The four 1,4-di-substituted 1,2,3-triazoles synthesized via deacetylation were tested against glycogen phosphorylase. The best inhibitor of rabbit muscle glycogen phosphorylase was 2-Amino-3-{2-[1-(3,4,5,6-tetrahydroxytetrahydro- pyran-2-ylmethyl)-1H-[1,2,3]triazol-4-yl]-ethylsulfanyl}-propionic acid b (Ki = 40.8 ± 3.2 μM). This novel procedure affords an eco-friendly reaction profile (catalyst-free) affording high yields and short reaction times.

Conclusion: In this work, acetyl protective groups were used to the corresponding deprotected watersoluble triazole analogous to recognizing glycogen phosphorylase inhibitors. Triazole 6a was the most effective inhibitor of RMGP b with a Ki value of 40.8 μM.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570179419666220420133644DOI Listing

Publication Analysis

Top Keywords

glycogen phosphorylase
16
phosphorylase inhibitors
8
ball milling
8
high yields
8
protective groups
8
408 μm
8
milling
6
mechanochemical promoted
4
promoted heterocycles
4
heterocycles solvent-free
4

Similar Publications

Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.

View Article and Find Full Text PDF

An optical BOD biosensor based on intracellular ATP measurements in genetically modified Saccharomyces cerevisiae.

Anal Sci

December 2024

School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.

A biosensor for biochemical oxygen demand (BOD) was developed based on intracellular 5'-adenosine triphosphate (ATP) measurements in Saccharomyces cerevisiae. Intracellular ATP was measured using an engineered protein named ATeam, comprising a bacterial FF-ATP synthase ε subunit sandwiched between cyan fluorescent protein and mVenus, a modified yellow fluorescent protein. Because the binding of ATP to ATeam induces changes in the fluorescence spectra owing to Fӧrster resonance energy transfer, S.

View Article and Find Full Text PDF

Glycogen storage disorder types IX: the mutation spectrum and ethnic distribution.

Orphanet J Rare Dis

December 2024

Assistant Professor of Cellular and Molecular Medicine, Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Khalili St., Research Tower, Seventh Floor, Shiraz, Iran.

Glycogen storage disorders (GSD) GSD-IX are characterized by deficiencies in muscular and/or hepatic phosphorylase enzymes. GSD type IX za is an X-linked disorder, while IXb and IXc are autosomal recessive disorders resulting from pathogenic variants in the genes encoding the Phosphorylase b Kinase regulatory subunit alpha (PHKA), beta (PHKB), and gamma (PHKG), respectively. Despite progress in understanding these diseases, there are still unclear questions regarding their clinical manifestations, genetic variations, and the relationship between genotype and phenotype.

View Article and Find Full Text PDF

Background: African walnut () oil (AWO) has been reported for its nutritional and medicinal properties and has been employed for the management of metabolic diseases including hyperglycemia-mediated ailments.

Objective: In the present study, AWO was investigated for its ability to stimulate glucose uptake and its effect on energy metabolism, steroidogenesis, and tissue morphology in isolated testes of Wistar rats.

Methods: Isolated testes were incubated with AWO (30-240 μg/mL) in the presence of 11.

View Article and Find Full Text PDF
Article Synopsis
  • * A study on mice with reduced mitochondrial superoxide dismutase (SOD2) showed that a lack of this enzyme led to increased muscle glycogen and motor dysfunction, indicating a link between mitochondrial health and muscle performance.
  • * The research found that the enzyme responsible for breaking down glycogen (GP-M) was less active in these mice and could be restored by antioxidants, suggesting that maintaining mitochondrial redox balance is crucial for proper glycogen metabolism and muscle function.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!