AI Article Synopsis

  • Deep Transcranial Magnetic Stimulation (dTMS) is an FDA-approved non-invasive therapy that effectively treats depression and OCD.* -
  • A study involving 29 OCD patients found that after 30 sessions of dTMS, all participants showed at least a 35% reduction in OCD symptoms, measured by the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS).* -
  • QEEG data indicated significant decreases in theta, alpha, and beta brain rhythms, with the reduction in OCD severity linked to decreased beta activity, suggesting dTMS may alter brain oscillations related to treatment response.*

Article Abstract

Deep Transcranial Magnetic Stimulation (dTMS) is a non-invasive treatment cleared by FDA as a safe and efficient intervention for the treatment of depression and obsessive-compulsive disorder (OCD). In this retrospective single-center study, the effects of dTMS on the electrophysiological parameters and the clinical outcomes of patients with OCD were tested. Thirty sessions of dTMS were administered to 29 OCD patients (15 female and 14 male). Quantitative electroencephalography (QEEG) recordings and Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) were measured at baseline and endpoint. Paired sample t-test was used to measure the change in Y-BOCS scores and QEEG activity after dTMS practice. All 29 patients responded to the dTMS intervention by indicating at least 35% reduction in Y-BOCS scores. QEEG recordings revealed a significant decrease in theta, alpha and the beta rhythms. The decrease in the severity of OCD symptoms correlated with the decrease in beta activity at left central region. Historically, excess fast oscillations in OCD are correlated with the unresponsiveness to selective serotonin reuptake inhibitor (SSRI) treatment. We hypothesize that the decrease in the power of beta bands by deep TMS is related to the mechanism of the therapeutic response.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15500594221095385DOI Listing

Publication Analysis

Top Keywords

deep transcranial
8
transcranial magnetic
8
magnetic stimulation
8
electrophysiological parameters
8
obsessive-compulsive disorder
8
qeeg recordings
8
y-bocs scores
8
scores qeeg
8
dtms
5
ocd
5

Similar Publications

PADS-Net: GAN-based radiomics using multi-task network of denoising and segmentation for ultrasonic diagnosis of Parkinson disease.

Comput Med Imaging Graph

January 2025

The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:

Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.

View Article and Find Full Text PDF

Exploring the therapeutic potential of tDCS, TMS and DBS in overcoming tobacco use disorder: an umbrella review.

AIMS Neurosci

October 2024

Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy.

The purpose of the present study was to investigate the effects of neuromodulation techniques, including transcranial direct current stimulation, transcranial magnetic stimulation, and deep brain stimulation, on the treatments of nicotine dependence. Specifically, our objective was to assess the existing evidence by conducting an umbrella review of systematic reviews. The quality of the included studies was evaluated using the standardized tools designed to evaluate systematic reviews.

View Article and Find Full Text PDF

Suppression of epileptic seizures by transcranial activation of K-selective channelrhodopsin.

Nat Commun

January 2025

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive.

View Article and Find Full Text PDF

Objective: This study investigates cerebrovascular reactivity (CVR) changes in cryptogenic stroke (CS) patients with right-to-left shunts (RLS) and evaluates the relationship between CVR and white matter hyperintensities (WMHs).

Methods: The breath-holding index (BHI), representing CVR, was measured from the middle cerebral artery (MCA) using the breath-holding method. WMHs were defined as clearly hyperintense areas on 3T magnetic resonance imaging (MRI), assessed separately as periventricular hyperintensities (PVH) and deep white matter hyperintensities (DWMH).

View Article and Find Full Text PDF

Glioblastoma multiforme is an aggressive malignancy with a dismal 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier (BBB). We have previously shown that high-amplitude repetitive transcranial magnetic stimulation (rTMS) in rats allowed the delivery across the BBB of an IGF signaling inhibitor-IGF-Trap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!