Administration of Melatonin in Diabetic Retinopathy Is Effective and Improves the Efficacy of Mesenchymal Stem Cell Treatment.

Stem Cells Int

Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt 62511.

Published: April 2022

Stem cell transplantation is a promising therapeutic technique for the treatment of a variety of diseases; nevertheless, stem cell therapy may not always work as well as it could. The goal of this study was to test the hypothesis that employing a powerful antioxidant like melatonin improves stem cell transplantation success and potentiates stem cell function in the therapy of diabetic retinopathy. For this purpose, 50 adult male rats were divided into the following: control group: this group received 0.5 ml of 0.1 M of sodium citrate buffer (pH = 4.5) (intraperitoneal (I.P.)). The confirmed diabetic rats were divided into 4 groups: diabetic group: confirmed diabetic rats received no treatments with a regular follow of the blood glucose profile for 8 weeks; melatonin group: confirmed diabetic rats received melatonin (5 mg/kg/day); stem cell group: the confirmed diabetic rats were given intravitreal injection of stem cells (2 l cell suspension of stem cells (3 × 10 cells/l)); and melatonin+stem cell group: confirmed diabetic rats received melatonin (5 mg/kg/day), orally once daily for 8 weeks, and 2 l cell suspension of stem cells (3 × 10 cells/l) was carefully injected into the vitreous cavity. Our results showed that administration of melatonin and/or stem cell restored the retinal oxidative/antioxidant redox and reduced retinal inflammatory mediators. Coadministration of melatonin and stem cells enhanced the number of transplanted stem cells in the retinal tissue and significantly reduced retinal BDEF, VEGF, APOA1, and RBP4 levels as compared to melatonin and/or stem alone. We may conclude that rats treated with melatonin and stem cells had their retinal oxidative/antioxidant redox values restored to normal and their histological abnormalities reduced. These findings support the hypothesis that interactions with the BDEF, VEGF, APOA1, and RBP4 signaling pathways are responsible for these effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017455PMC
http://dx.doi.org/10.1155/2022/6342594DOI Listing

Publication Analysis

Top Keywords

stem cell
28
stem cells
24
confirmed diabetic
20
diabetic rats
20
group confirmed
16
stem
14
rats received
12
cell
10
administration melatonin
8
diabetic
8

Similar Publications

Donor-specific antibodies (DSAs) are essential causes of graft rejection in haploidentical hematopoietic stem cell transplantation (haplo-HSCT). DSAs are unavoidable for some patients who have no alternative donor. Effective interventions to reduce DSAs are still needed, and the cost of the current therapies is relatively high.

View Article and Find Full Text PDF

Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles.

Cell Transplant

January 2025

Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China.

Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs).

View Article and Find Full Text PDF

Cell therapy: A beacon of hope in the battle against pulmonary fibrosis.

FASEB J

January 2025

Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative.

View Article and Find Full Text PDF

Genomic profiling at a single center cracks the code in inborn errors of immunity.

Intern Emerg Med

January 2025

Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.

Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!