P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy of adsorbed alkyl-substituted phosphine oxides has witnessed tremendous progress during the last years and has become one of the most informative and sensitive methods of zeolite acidity investigation. However, quantitative evaluation of the number of sites is still a challenge. This study clarifies the main origin of errors occurring during NMR experiments, introduces the appropriate standards (both internal and external), and determines the relaxation parameters and the conditions for the acquisition and integration of spectra. As a result, a methodology for the quantitative measurement of the content of Brønsted and Lewis sites and the amount of internal and external silanol groups is established. The application of probe molecules of different sizes (namely, trimethylphosphine oxide (TMPO), tri--butylphosphine oxide (TBPO), and tri--octylphosphine oxide (TOPO)) is shown to be a good tool for distinguishing between the active sites inside the zeolite pores, mesopores, and on the outer crystal surface. The methodology proposed is verified on BEA zeolites different in composition, texture, and morphology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016808 | PMC |
http://dx.doi.org/10.1021/acsomega.2c00804 | DOI Listing |
Sci Bull (Beijing)
January 2025
Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China. Electronic address:
The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
The thermocatalytic conversion of CO with green or blue hydrogen into valuable energy and commodity chemicals such as alcohols, olefins, and aromatics emerges as one of the most promising strategies for mitigating global warming concerns in the future. This process can follow either a CO-modified Fischer-Tropsch synthesis route or a methanol-mediated route, with the latter being favored for its high product selectivity beyond the Anderson-Schulz-Flory distribution. Despite the progress of the CO-led methanol-mediated route over bifunctional metal/zeolite catalysts, challenges persist in developing catalysts with both high activity and selectivity due to the complexity of CO hydrogenation reaction networks and the difficulty in controlling C-O bond activation and C-C bond coupling on multiple active sites within zeolites.
View Article and Find Full Text PDFChem Rec
January 2025
Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China.
The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0FA, UK.
Methanol adsorption isotherms of fresh f-ZSM-5 and steamed s-ZSM-5 (Si/Al ≈ 40) are investigated experimentally at room temperature under equilibrium and by grand canonical Monte Carlo (GCMC) simulations with the aim of understanding the adsorption capacity, geometry and sites as a function of steam treatment (at 573 K for 24 h). Methanol adsorption energies calculated by GCMC are complemented by density functional theory (DFT) employing both periodic and quantum mechanics/molecular mechanics (QM/MM) techniques. Physical and textural properties of f-ZSM-5 and s-ZSM-5 are characterised by diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) and N-physisorption, which form a basis to construct models for f-ZSM-5 and s-ZSM-5 to simulate methanol adsorption isotherms by GCMC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!