Optical chemical imaging has established itself as a valuable technique for visualizing analyte distributions in 2D, notably in medical, biological, and environmental applications. In particular for image acquisitions on small scales between few millimeter to the micrometer range, as well as in heterogeneous samples with steep analyte gradients, image resolution is essential. When individual pixels are inspected, however, image noise becomes a metric as relevant as image accuracy and precision, and denoising filters are applied to preserve relevant information. While denoising filters smooth the image noise, they can also lead to a loss of spatial resolution and thus to a loss of relevant information about analyte distributions. To investigate the trade-off between image resolution and noise reduction for information preservation, we studied the impact of random camera noise and noise due to incorrect camera settings on oxygen optodes using the ratiometric imaging technique. First, we estimated the noise amplification across the calibration process using a Monte Carlo simulation for nonlinear fit models. We demonstrated how initially marginal random camera noise results in a significant standard deviation (SD) for oxygen concentration of up to 2.73% air under anoxic conditions, although the measurement was conducted under ideal conditions and over 270 thousand sample pixels were considered during calibration. Second, we studied the effect of the Gaussian denoising filter on a steep oxygen gradient and investigated the impact when the smoothing filter is applied during data processing. Finally, we demonstrated the effectiveness of a Savitzky-Golay filter compared to the well-established Gaussian filter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016884 | PMC |
http://dx.doi.org/10.1021/acsomega.1c07232 | DOI Listing |
Sci Rep
January 2025
Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China.
With the rapid development of industrialization and urbanization, the impact of noise on people's health has become an increasingly serious issue, but it is still a challenge for the reducing the noise due to its complex property. Textiles with many loose porous structures have gained much significant attentions, thus chenille yarns with plush fibers on the surface, and polyester monofilament were chosen to fabricate the integrated knitting yarns, and their fundamental and mechanical properties were fully evaluated. The results showed that the diameter and braiding angle of the blended yarns decreased with the increase of pitch, resulting in a linear correlation of R > 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
This paper introduces a novel method for spleen segmentation in ultrasound images, using a two-phase training approach. In the first phase, the SegFormerB0 network is trained to provide an initial segmentation. In the second phase, the network is further refined using the Pix2Pix structure, which enhances attention to details and corrects any erroneous or additional segments in the output.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, VIT University, Tamilnadu, 632014, India.
Sci Rep
January 2025
Jiangxi Tellhow Power Technology Co., Ltd, Nanchang, 330031, China.
This paper presents a surrogate-assisted global and distributed local collaborative optimization (SGDLCO) algorithm for expensive constrained optimization problems where two surrogate optimization phases are executed collaboratively at each generation. As the complexity of optimization problems and the cost of solutions increase in practical applications, how to efficiently solve expensive constrained optimization problems with limited computational resources has become an important area of research. Traditional optimization algorithms often struggle to balance the efficiency of global and local searches, especially when dealing with high-dimensional and complex constraint conditions.
View Article and Find Full Text PDFISA Trans
January 2025
Leuphana University of Lueneburg, Universitaetsallee 1, 21335 Lueneburg, Germany. Electronic address:
This paper addresses a non-interacting torque control strategy to decouple the d- and q-axis dynamics of a permanent magnet synchronous machine (PMSM). The maximum torque per ampere (MTPA) method is used to determine the reference currents for the desired torque. To realize the noninteracting control, knowledge concerning the inductances L and L of the electrical machine is necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!