Deep Neural Network-Assisted Drug Recommendation Systems for Identifying Potential Drug-Target Interactions.

ACS Omega

DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110 016, India.

Published: April 2022

In silico methods to identify novel drug-target interactions (DTIs) have gained significant importance over conventional techniques owing to their labor-intensive and low-throughput nature. Here, we present a machine learning-based multiclass classification workflow that segregates interactions between active, inactive, and intermediate drug-target pairs. Drug molecules, protein sequences, and molecular descriptors were transformed into machine-interpretable embeddings to extract critical features from standard datasets. Tools such as CHEMBL web resource, iFeature, and an in-house developed deep neural network-assisted drug recommendation (dNNDR)-featx were employed for data retrieval and processing. The models were trained with large-scale DTI datasets, which reported an improvement in performance over baseline methods. External validation results showed that models based on att-biLSTM and gCNN could help predict novel DTIs. When tested with a completely different dataset, the proposed models significantly outperformed competing methods. The validity of novel interactions predicted by dNNDR was backed by experimental and computational evidence in the literature. The proposed methodology could elucidate critical features that govern the relationship between a drug and its target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016825PMC
http://dx.doi.org/10.1021/acsomega.2c00424DOI Listing

Publication Analysis

Top Keywords

deep neural
8
neural network-assisted
8
network-assisted drug
8
drug recommendation
8
drug-target interactions
8
critical features
8
drug
4
recommendation systems
4
systems identifying
4
identifying potential
4

Similar Publications

Purpose: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for segmentation, it falls short in landmark detection, a strength of shape-based approaches.

Methods: In this work, we propose a dense image-to-shape representation that enables the joint learning of landmarks and semantic segmentation by employing a fully convolutional architecture.

View Article and Find Full Text PDF

Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures.

View Article and Find Full Text PDF

Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of these data complicates analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a quantity called the isodepth. Contours of constant isodepths enclose domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in expression.

View Article and Find Full Text PDF

A novel domain feature disentanglement method for multi-target cross-domain mechanical fault diagnosis.

ISA Trans

January 2025

State Key Laboratory of Computer-Aided Design and Computer Graphics, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Intelligent Rescue Equipment for Collapse Accidents, Ministry of Emergency Management, Hangzhou, 310030, China; Zhejiang Laboratory, Hangzhou, 311121, China. Electronic address:

Existing cross-domain mechanical fault diagnosis methods primarily achieve feature alignment by directly optimizing interdomain and category distances. However, this approach can be computationally expensive in multi-target scenarios or fail due to conflicting objectives, leading to decreased diagnostic performance. To avoid these issues, this paper introduces a novel method called domain feature disentanglement.

View Article and Find Full Text PDF

Microgrids play an important role in stabilizing the electrical grid and they are the best route to develop green and sustainable energy. Since microgrids are expanding rapidly, it is necessary to consider the related control issues including power quality, bidirectional power flow, voltage and frequency control, and stability analysis. One of the main measurement challenges is the communication delay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!