Genetic and Physiological Responses to Heat Stress in .

Front Plant Sci

School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom.

Published: April 2022

Given the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. , the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering. Several studies have shown that extreme temperature fluctuations during these crucial periods have detrimental effects on the plant and often leading to impaired growth and reduced seed production. The underlying mechanisms of heat stress adaptations and associated key regulatory genes are discussed. Furthermore, an overview and the implications of the polyploidy nature of and the regulatory role of alternative splicing in forming a priming-induced heat-stress memory are presented. New insights into the dynamics of epigenetic modifications during heat stress are discussed. Interestingly, while such studies are scarce in , opposite trends in expression of key genetic and epigenetic components have been identified in different species and in cultivars within the same species under various abiotic stresses, suggesting a complex role of these genes and their regulation in heat stress tolerance mechanisms. Additionally, omics-based studies are discussed with emphasis on the transcriptome, proteome and metabolome of , to gain a systems level understanding of how heat stress alters its yield and quality traits. The combination of omics approaches has revealed crucial interactions and regulatory networks taking part in the complex machinery of heat stress tolerance. We identify key knowledge gaps regarding the impact of heat stress on during its yield determining reproductive stages, where in-depth analysis of this subject is still needed. A deeper knowledge of heat stress response components and mechanisms in tissue specific models would serve as a stepping-stone to gaining insights into the regulation of thermotolerance that takes place in this important crop species and support future breeding of heat tolerant crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016328PMC
http://dx.doi.org/10.3389/fpls.2022.832147DOI Listing

Publication Analysis

Top Keywords

heat stress
40
heat
12
stress
10
genetic physiological
8
yield quality
8
impact heat
8
reproductive stages
8
stress tolerance
8
physiological responses
4
responses heat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!