Our scientific understanding of climate change makes clear the necessity for both emission reduction and carbon dioxide removal (CDR). The ocean with its large surface area, great depths and long coastlines is central to developing CDR approaches commensurate with the scale needed to limit warming to below 2 °C. Many proposed marine CDR approaches rely on spatial upscaling along with enhancement and/or acceleration of the rates of naturally occurring processes. One such approach is 'ocean afforestation', which involves offshore transport and concurrent growth of nearshore macroalgae (seaweed), followed by their export into the deep ocean. The purposeful occupation for months of open ocean waters by macroalgae, which do not naturally occur there, will probably affect offshore ecosystems through a range of biological threats, including altered ocean chemistry and changed microbial physiology and ecology. Here, we present model simulations of ocean afforestation and link these to lessons from other examples of offshore dispersal, including rafting plastic debris, and discuss the ramifications for offshore ecosystems. We explore what additional metrics are required to assess the ecological implications of this proposed CDR. In our opinion, these ecological metrics must have equal weight to CDR capacity in the development of initial trials, pilot studies and potential licensing.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-022-01722-1DOI Listing

Publication Analysis

Top Keywords

offshore ecosystems
12
ocean afforestation
8
cdr approaches
8
ocean
6
offshore
5
cdr
5
potential negative
4
negative effects
4
effects ocean
4
afforestation offshore
4

Similar Publications

Borealis is a recently discovered submerged mud volcano in the Polar North Atlantic, differing from the numerous methane seepages previously identified in the region. Here we show in situ observations from a remotely operated vehicle (ROV), capturing the release of warm (11.5 °C) Neogene sediments and methane-rich fluids from a gryphon at Borealis.

View Article and Find Full Text PDF

[Marine trophic and socio-ecological networks under pressure: study of the cumulative impact of climate change and offshore wind farm development].

Biol Aujourdhui

January 2025

UMR CNRS-UniCaen-MNHN-SU-UA-IRD BOREA, Biologie des Organismes et des Écosystèmes Aquatiques, Université de Caen-Normandie, CS 14032, 14000 Caen, France - France Énergies Marines, 53 rue de Prony, 76600 Le Havre, France.

In the anthropocene era, one of the greatest challenges facing trophic modeling applied to the marine environment is its ability to couple the multiple effects of both climate change and local anthropogenic activities, notably the development of offshore wind farms. The major challenge is to create scenarios to characterize their cumulative effects on the functioning of the entire socio-ecological system, in order to propose appropriate management plans. Although modeling cumulative impact on socio-ecological networks is not yet widely used, data reported in the present review article show that the relevance of this approach could be established in the context of offshore wind power.

View Article and Find Full Text PDF

Evaluating Ecosystem Characteristics and Ecological Carrying Capacity for Marine Fauna Stock Enhancement Within a Marine Ranching System.

Animals (Basel)

January 2025

Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.

China has recently launched extensive marine ranching projects, highlighting the need for scientific evaluation of ecosystem structure and function to guide their development. This study established two energy flow models and an evaluation index system to assess the structure, function, carrying capacity, and ecological status of both a marine ranching ecosystem and a nearby control site in the Beibu Gulf. The results show that the ranching ecosystem outperformed the control ecosystem in terms of food chain length, system size, and ecological carrying capacity of economically important species.

View Article and Find Full Text PDF

Estuarine ecosystems have been threatened by increasing anthropogenic and natural pressures, yet the integral understanding of their stability characteristics of microbial communities at taxonomic, habitat, and spatial scales remains limited. In this study, the Mulan River estuary in southeastern China was selected to compare the stability characteristics of bacterial and protistan communities in water and sediments over three hydrological periods, and to explore their spatial variations along the estuarine continuum from river to ocean. The potential driving mechanisms of stability characteristics were also explored.

View Article and Find Full Text PDF

Beach groundwater and nearshore hydrodynamic data were collected during a field experiment along two dissipative beach transects on Galveston Island, Texas, in the fall of 2023. The monitored beaches serve as nesting habitat for the critically endangered Kemp's ridley sea turtle. Conditions ranged from calm to stormy, with two storms occurring during the experiment, inundating the entire beach up to the dune toe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!