Photodynamic therapy (PDT) offers several advantages for treating cancers, but its efficacy is highly dependent on light delivery to activate a photosensitizer. Advances in wireless technologies enable remote delivery of light to tumors, but suffer from key limitations, including low levels of tissue penetration and photosensitizer activation. Here, we introduce DeepLabCut (DLC)-informed low-power wireless telemetry with an integrated thermal/light simulation platform that overcomes the above constraints. The simulator produces an optimized combination of wavelengths and light sources, and DLC-assisted wireless telemetry uses the parameters from the simulator to enable adequate illumination of tumors through high-throughput (<20 mice) and multi-wavelength operation. Together, they establish a range of guidelines for effective PDT regimen design. In vivo Hypericin and Foscan mediated PDT, using cancer xenograft models, demonstrates substantial suppression of tumor growth, warranting further investigation in research and/or clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023557PMC
http://dx.doi.org/10.1038/s41467-022-29878-1DOI Listing

Publication Analysis

Top Keywords

wireless telemetry
12
photodynamic therapy
8
ai-enabled implantable
4
implantable multichannel
4
wireless
4
multichannel wireless
4
telemetry photodynamic
4
therapy photodynamic
4
therapy pdt
4
pdt offers
4

Similar Publications

In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.

View Article and Find Full Text PDF

Rapid growth in bio-logging-the use of animal-borne electronic tags to document the movements, behaviour, physiology and environments of wildlife-offers opportunities to mitigate biodiversity threats and expand digital natural history archives. Here we present a vision to achieve such benefits by accounting for the heterogeneity inherent to bio-logging data and the concerns of those who collect and use them. First, we can enable data integration through standard vocabularies, transfer protocols and aggregation protocols, and drive their wide adoption.

View Article and Find Full Text PDF

Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.

View Article and Find Full Text PDF

Background: Chest pain is the second most common reason to present to the emergency department in the United States, and the ECG is a first-line diagnostic tool for myocardial ischemia assessment. For patients with ongoing symptoms or unclear initial ECGs, guidelines recommend performing multiple standard ECGs at 15-30-min intervals during the first 1-2 h, which improves acute coronary syndrome (ACS) detection by 15 % and accelerates triage of high-risk ACS patients. However, obtaining serial ECG is not consistently practiced due to overcrowding and the limited technical abilities of current 12‑lead ECG machines.

View Article and Find Full Text PDF
Article Synopsis
  • Mismatch negativity (MMN) is a response in the brain to unexpected sounds, showing reduced activity in individuals with schizophrenia, prompting research into factors influencing MMN amplitude.
  • This study focuses on how these mismatch responses (MMRs) work in rats and whether they show "order effects" when exposed to changing sound patterns.
  • Results indicate that while rats displayed strong MMRs to changing sounds, they did not show order effects, suggesting their auditory prediction systems have different adaptive mechanisms compared to humans.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!