Organic electrochemical transistors (OECTs) represent an emerging device platform for next-generation bioelectronics owing to the uniquely high amplification and sensitivity to biological signals. For achieving seamless tissue-electronics interfaces for accurate signal acquisition, skin-like softness and stretchability are essential requirements, but they have not yet been imparted onto high-performance OECTs, largely due to the lack of stretchable redox-active semiconducting polymers. Here, a stretchable semiconductor is reported for OECT devices, namely poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT performance on par with the state-of-the-art. Validated by systematic characterizations and comparisons of different polymers, the key design features of this polymer that enable the combination of high stretchability and high OECT performance are a nonlinear backbone architecture, a moderate side-chain density, and a sufficiently high molecular weight. Using this highly stretchable polymer semiconductor, an intrinsically stretchable OECT is fabricated with high normalized transconductance (≈223 S cm ) and biaxial stretchability up to 100% strain. Furthermore, on-skin electrocardiogram (ECG) recording is demonstrated, which combines built-in amplification and unprecedented skin conformability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202201178 | DOI Listing |
Mater Horiz
September 2024
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
The redox-diffusion (RD) battery concept introduces an environmentally friendly solution for stretchable batteries in autonomous wearable electronics. By utilising plant-based redox-active biomolecules and cellulose fibers for the electrode scaffold, separator membrane, and current collector, along with a biodegradable elastomer encapsulation, the battery design overcomes the reliance on unsustainable transition metal-based active materials and non-biodegradable elastomers used in existing stretchable batteries. Importantly, it addresses the drawback of limited attainable battery capacity, where increasing the active material loading often leads to thicker and stiffer electrodes with poor mechanical properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2024
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany.
Organic-hybrid particle-based materials are increasingly important in (opto)electronics, sensing, and catalysis due to their printability and stretchability as well as their potential for unique synergistic functional effects. However, these functional properties are often limited due to poor electronic coupling between the organic shell and the nanoparticle. N-heterocyclic carbenes (NHCs) belong to the most promising anchors to achieve electronic delocalization across the interface, as they form robust and highly conductive bonds with metals and offer a plethora of functionalization possibilities.
View Article and Find Full Text PDFAdv Mater
June 2024
CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, School of Chemistry and Materials Science, Division of Nanomaterials &Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.
The advancement of aqueous micro-supercapacitors offers an enticing prospect for a broad spectrum of applications, spanning from wearable electronics to micro-robotics and sensors. Unfortunately, conventional micro-supercapacitors are characterized by low capacity and slopy voltage profiles, limiting their energy density capabilities. To enhance the performance of these devices, the use of 2D MXene-based compounds has recently been proposed.
View Article and Find Full Text PDFScience
August 2023
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer.
View Article and Find Full Text PDFMater Horiz
June 2023
Shenzhen Research Institute of Southwest Jiaotong University, Shenzhen, Guangdong, 518000, China.
Stretchable and conductive hydrogels are rapidly emerging as new generation candidates for wearable devices. However, the poor electroactivity and bioadhesiveness of traditional conductive hydrogels has limited their applications. Herein, a mussel-inspired strategy is proposed to prepare a specific core-shell redox-active system, consisting of a polydopamine (PDA) modified zeolitic imidazolate framework 71 (ZIF-71) core, and a poly 3,4-ethylenedioxythiopene (PEDOT) shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!