AI Article Synopsis

  • In vitro models of animals can help test antiviral drugs against SARS-CoV-2, particularly inhibitors of the enzyme TMPRSS2.
  • Researchers measured the effects of these inhibitors on the activity of the cytochrome P450 (CYP) 1A2 enzyme and assessed their toxicity using specific assays.
  • Results showed significant impacts on CYP1A2 in various animal microsomes, with specific IC50 values indicating the potency of different inhibitors, and the importance of TMPRSS2 as a target for developing new antiviral treatments.

Article Abstract

In vitro models of animals vulnerable to SARS-CoV-2 infection can support the characterization of effective antiviral drugs, such as synthetic inhibitors of the transmembrane protease serine 2 (TMPRSS2). Changes in cytochrome P450 (CYP) 1A2 activities in the presence of the potential TMPRSS2/matriptase inhibitors (MI) were measured using fluorometric and luminescent assays. Furthermore, the cytotoxicity of these inhibitors was evaluated using the MTS method. In addition, 60 min-long microsomal stability assays were performed using an UPLC-MS/MS procedure to elucidate depletion rates of the inhibitors. CYP1A2 was influenced significantly by MI-463 and MI-1900 in rat microsomes, by MI-432 and MI-482 in beagle microsomes, and by MI-432, MI-463, MI-482, and MI-1900 in cynomolgus monkey microsomes. The IC50 values in monkey microsomes were 1.30 ± 0.14 µM, 2.4 ± 1.4 µM, 0.21 ± 0.09 µM, and 1.1 ± 0.8 µM for inhibitors MI-432, MI-463, MI-482, and MI-1900, respectively. The depletion rates of the parent compounds were lower than 50%, independently of the investigated animal species. The host cell factor TMPRSS2 is of key importance for the cross-species spread of SARS-CoV-2. Studies of the in vitro biotransformation of TMPRSS2 inhibitors provide additional information for the development of new antiviral drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027957PMC
http://dx.doi.org/10.3390/vetsci9040156DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
8
antiviral drugs
8
depletion rates
8
microsomes mi-432
8
mi-432 mi-463
8
mi-463 mi-482
8
mi-482 mi-1900
8
monkey microsomes
8
µm µm
8
inhibitors
6

Similar Publications

Specialized metabolites are molecules involved in plants' interaction with their environment. Elucidating their biosynthetic pathways is a challenging but rewarding task, leading to societal applications and ecological insights. Furanocoumarins emerged multiple times in Angiosperms, raising the question of how different enzymes evolved into catalyzing identical reactions.

View Article and Find Full Text PDF

Insects, the most numerous and diverse group of animal species on Earth, have important interactions with humans through providing resources, transmitting diseases and damaging agricultural cultivars. Cytochrome P450 monooxygenases (P450s) are one of the most important protein families in insects implicated in the endogenous metabolism and detoxification of xenobiotics, including allelochemicals, insecticides and environmental pollutants. To better understand the evolution and function of insect P450s and support the development and application of insecticides for pest control, an integrated bioinformatics platform is highly desirable.

View Article and Find Full Text PDF

Customizing Tacrolimus Dosing in Kidney Transplantation: Focus on Pharmacogenetics.

Ther Drug Monit

February 2025

Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.

Different polymorphisms in genes encoding metabolizing enzymes and drug transporters have been associated with tacrolimus pharmacokinetics. In particular, studies on CYP3A4 and CYP3A5, and their combined cluster have demonstrated their significance in adjusting tacrolimus dosing to minimize under- and overexposure thereby increasing the proportion of patients who achieve tacrolimus therapeutic target. Many factors influence the pharmacokinetics of tacrolimus, contributing to inter-patient variability affecting individual dosing requirements.

View Article and Find Full Text PDF

SPT-07A, a D-borneol, is currently being developed in China for the treatment of ischemic stroke. We aimed to create a whole-body physiologically-based pharmacokinetic (PBPK) model to predict the pharmacokinetics of SPT-07A in rats, dogs, and humans. The in vitro metabolism of SPT-07A was studied using hepatic, renal, and intestinal microsomes.

View Article and Find Full Text PDF

: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!