Traditional nanoparticle (NP) synthesis methods are expensive and generate hazardous products. It is essential to limit the risk of toxicity in the environment from the chemicals as high temperature and pressure is employed in chemical and physical procedures. One of the green strategies used for sustainable manufacturing is microbial nanoparticle synthesis, which connects microbiology with nanotechnology. Employing biocontrol agents and (Teleomorphs), an ecofriendly and rapid technique of nanoparticle biosynthesis has been reported in several studies which may potentially overcome the constraints of the chemical and physical methods of nanoparticle biosynthesis. The emphasis of this review is on the mycosynthesis of several metal nanoparticles from species for use in agri-food applications. The fungal-cell or cell-extract-derived NPs (mycogenic NPs) can be applied as nanofertilizers, nanofungicides, plant growth stimulators, nano-coatings, and so on. Further, -mediated NPs have also been utilized in environmental remediation approaches such as pollutant removal and the detection of pollutants, including heavy metals contaminants. The plausible benefits and pitfalls associated with the development of useful products and approaches to trichogenic NPs are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027617PMC
http://dx.doi.org/10.3390/jof8040367DOI Listing

Publication Analysis

Top Keywords

nanoparticle synthesis
8
chemical physical
8
nanoparticle biosynthesis
8
eco-friendly source
4
source nanomaterials
4
nanomaterials sustainable
4
sustainable agroecosystems
4
agroecosystems traditional
4
nanoparticle
4
traditional nanoparticle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!