Cytochrome P450s are a group of monooxygenase enzymes involved in primary, secondary and xenobiotic metabolisms. They have a wide application in the agriculture sector where they could serve as a target for herbicides or fungicides, while they could function in the pharmaceutical industry as drugs or drugs structures or for bioconversions. species are among the most commonly encountered fungal genera, with most of them living as saprophytes in different habitats, while others are parasites of plants and animals. This study was conducted to elucidate the diversity and abundance, evolutionary relationships and cellular localization of 372 cytochrome P450 in 13 species. The 372 CYP proteins were phylogenetically clustered into ten clades. Forty (40) clans and seventy-one (71) cyp families were identified, of which eleven (11) families were found to appear in one species each. The majority of the CYP proteins were located in the endomembrane system. Polyketide synthase (PKS) gene cluster was the predominant secondary metabolic-related gene cluster in all the studied, except in , where non-ribosomal peptide synthetase genes were dominant. This study reveals the expansion of cyps in these fungal genera, evident in the family and clan expansions, which is usually associated with the evolution of fungal characteristics, especially their lifestyle either as parasites or saprophytes, with the ability to metabolize a wide spectrum of substrates. This study can be used to understand the biology, physiology and toxigenic potentials of P450 in these fungal genera.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028179PMC
http://dx.doi.org/10.3390/jof8040324DOI Listing

Publication Analysis

Top Keywords

fungal genera
12
cytochrome p450s
8
cyp proteins
8
gene cluster
8
genome-wide analysis
4
analysis cytochrome
4
species
4
p450s species
4
species evolutionary
4
evolutionary origin
4

Similar Publications

Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.

View Article and Find Full Text PDF

Recently we demonstrated that the seed microbiome of certain spinach (Spinacia oleracea) seed lots can confer disease suppression against Globisporangium ultimum damping-off (previously known as Pythium ultimum). We hypothesised that differences in the microbial community composition of spinach seed lots correlate with the levels of damping-off suppressiveness of each seed lot. Here, we show that a large proportion of variance in seed-associated bacterial (16S) and fungal (ITS1) amplicon sequences was explained by seed lot identity, while 9.

View Article and Find Full Text PDF

Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.

View Article and Find Full Text PDF

Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).

View Article and Find Full Text PDF

Metatranscriptomic insights into the mechanism of 'Multiple Qu' utilization in Jian-flavor Baijiu fermentation.

Food Res Int

January 2025

School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei city 230009, Anhui province, PR China. Electronic address:

The unique process of "Multiple-qu fermentation" (MF) is essential for the formation of the Jian-flavor Baijiu, but the mechanisms behind its aroma development remain not fully understood. This study compared the effects of "Single-qu fermentation"(SF) and MF on Baijiu production to elucidate the microbial and metabolic interactions responsible for its distinct aroma. Firstly, significant differences were observed in the microbial communities of the two types of Daqu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!