Rewiring of the Liver Transcriptome across Multiple Time-Scales Is Associated with the Weight Loss-Independent Resolution of NAFLD Following RYGB.

Metabolites

Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.

Published: April 2022

Roux-en-Y gastric bypass (RYGB) surgery potently improves obesity and a myriad of obesity-associated co-morbidities including type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Time-series omics data are increasingly being utilized to provide insight into the mechanistic underpinnings that correspond to metabolic adaptations in RYGB. However, the conventional computational biology methods used to interpret these temporal multi-dimensional datasets have been generally limited to pathway enrichment analysis (PEA) of isolated pair-wise comparisons based on either experimental condition or time point, neither of which adequately capture responses to perturbations that span multiple time scales. To address this, we have developed a novel graph network-based analysis workflow designed to identify modules enriched with biomolecules that share common dynamic profiles, where the network is constructed from all known biological interactions available through the Kyoto Encyclopedia of Genes and Genomes (KEGG) resource. This methodology was applied to time-series RNAseq transcriptomics data collected on rodent liver samples following RYGB, and those of sham-operated and weight-matched control groups, to elucidate the molecular pathways involved in the improvement of as NAFLD. We report several network modules exhibiting a statistically significant enrichment of genes whose expression trends capture acute-phase as well as long term physiological responses to RYGB in a single analysis. Of note, we found the HIF1 and P53 signaling cascades to be associated with the immediate and the long-term response to RYGB, respectively. The discovery of less intuitive network modules that may have gone overlooked with conventional PEA techniques provides a framework for identifying novel drug targets for NAFLD and other metabolic syndrome co-morbidities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025796PMC
http://dx.doi.org/10.3390/metabo12040318DOI Listing

Publication Analysis

Top Keywords

network modules
8
rygb
6
rewiring liver
4
liver transcriptome
4
transcriptome multiple
4
multiple time-scales
4
time-scales associated
4
associated weight
4
weight loss-independent
4
loss-independent resolution
4

Similar Publications

DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation.

Biomed Phys Eng Express

January 2025

Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China.

In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver condition characterized by excessive hepatic fat accumulation. Early diagnosis is crucial as NAFLD can progress to more severe conditions like steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma without timely intervention. While liver biopsy remains the gold standard for NAFLD assessment, abdominal ultrasound (US) imaging has emerged as a widely adopted non-invasive modality due to convenience and low cost.

View Article and Find Full Text PDF

CTCNet: a fine-grained classification network for fluorescence images of circulating tumor cells.

Med Biol Eng Comput

January 2025

Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China.

The identification and categorization of circulating tumor cells (CTCs) in peripheral blood are imperative for advancing cancer diagnostics and prognostics. The intricacy of various CTCs subtypes, coupled with the difficulty in developing exhaustive datasets, has impeded progress in this specialized domain. To date, no methods have been dedicated exclusively to overcoming the classification challenges of CTCs.

View Article and Find Full Text PDF

The immune system has emerged as a major factor in the pathogenesis of Alzheimer's disease (AD). PANoptosis is a newly defined programmed cell death mechanism related to many inflammatory diseases. This study aimed to identify the differentially expressed (DE) PANoptosis-related genes with characteristics of immune dysregulation (PRGIDs) in AD using bioinformatics analysis of bulk RNA-seq and single-nuclei RNA sequencing (snRNA-seq) data.

View Article and Find Full Text PDF

Identification of pain-related long non-coding RNAs for pulpitis prediction.

Clin Oral Investig

January 2025

Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.

Objectives: We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction.

Materials And Methods: Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!