The hybrid composite of silver nanowires (AgNWs) and reduced graphene oxide (RGO) was synthesized in situ by an improved polyol-thermal method. The AgNWs-RGO with mass contents of 5-37 wt% was added into the thermo-reversible Diels-Alder reaction polyurethane (DA-PU) matrix with the AgNWs as the main conductor and the RGO as the auxiliary conductor to prepare self-healing composite conductive films. Further, the electrical conductivity, thermal conductivity, mechanical properties, infrared thermal response, and self-healing property of the composite film under infrared light irradiation were studied. The experimental results demonstrate that the AgNWs-RGO endows the composite film with good electrical and thermal conductivity and infrared thermal response ability, while the mechanical properties of the composite film decrease as the AgNWs-RGO mass content increases. The self-healing efficiency of the composite film is higher than that of the pure DA-PU under infrared light irradiation due to the good infrared photothermal response ability of the AgNWs-RGO. When the mass content of AgNWs-RGO in the composite film was 25 wt%, the AgNWs-RGO showed good dispersion in composite films, and the resistivity, thermal conductivity, and tensile strength of the composite film were 0.544 Ω·m, 0.3039 W·m·K, and 9.05 MPa, respectively. The infrared photothermal conversion temperature of the composite film is 158.5 °C (3450 lux for 1 min), and the infrared photothermal self-healing efficiency is 118% (3450 lux for 600 s). The AgNWs-RGO also improves the multiple self-healing ability of the composite film. The use of a high mass content of AgNWs-RGO in the composite film is beneficial in obtaining high multiple self-healing efficiencies. The first and the fifth infrared thermal self-healing efficiencies of the composite film with AgNWs-RGO of 35 wt% are 105% and 86%, respectively, and the resistivity of the composite film changes little and still maintains good conductivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030009 | PMC |
http://dx.doi.org/10.3390/membranes12040405 | DOI Listing |
Anal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
The transdermal route is one of the effective routes for delivering drugs. It also overcomes many limitations associated with oral delivery. One of the limitations of this route is the drug's poor skin permeability-stratum corneum, the skin's outermost layer that also acts as a barrier for the drug to penetrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China.
Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.
View Article and Find Full Text PDFMXenes, a rapidly emerging class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted significant attention for their outstanding properties, including high electrical conductivity, tunable work function, and solution processability. These characteristics have made MXenes highly versatile and widely adopted in the next generation of optoelectronic devices, such as perovskite and organic solar cells. However, their integration into silicon-based optoelectronic devices remains relatively underexplored, despite silicon's dominance in the semiconductor industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!