Low-pressure membrane technology (ultrafiltration and microfiltration) has been applied to two key effluents generated by the petroleum industry: produced water (PW) from oil exploration, a significant proportion being generated offshore, and onshore refinery/petrochemical effluent. PW is treated physicochemically to remove the oil prior to discharge, whereas the onshore effluents are often treated biologically to remove both the suspended and dissolved organic fractions. This review examines the efficacy and extent of implementation of membrane technology for these two distinct applications, focusing on data and information pertaining to the treatment of real effluents at large/full scale. Reported data trends from PW membrane filtration reveal that, notwithstanding extensive testing of ceramic membrane material for this duty, the mean fluxes sustained are highly variable and generally insufficiently high for offshore treatment on oil platforms where space is limited. This appears to be associated with the use of polymer for chemically-enhanced enhanced oil recovery, which causes significant membrane fouling impairing membrane permeability. Against this, the application of MBRs to onshore oil effluent treatment is well established, with a relatively narrow range of flux values reported (9−17 L·m−2·h−1) and >80% COD removal. It is concluded that the prospects of MBRs for petroleum industry effluent treatment are more favorable than implementation of membrane filtration for offshore PW treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029438 | PMC |
http://dx.doi.org/10.3390/membranes12040391 | DOI Listing |
Pharmacol Rep
January 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.
Polymeric membranes with great processability are attractive for the H/CO separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H from CO.
View Article and Find Full Text PDFMinerva Urol Nephrol
December 2024
Department of Urology, University of Illinois at Chicago, Chicago, IL, USA.
Background: Transperitoneal approach to robot-assisted pyeloplasty (RAP) have been preferred in the last decades because of the use of multi-port robotic platforms. However, this approach is linked to notable issues, such as pneumoperitoneum and lateral decubitus position, which is associated with potential soft tissues injuries, and it is a time-consuming procedure. Single-port (SP) platform was introduced to potentially address these issues.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker.
View Article and Find Full Text PDFNanoscale
January 2025
Pro2TecS - Chemical Product and Process Technology Research Center. Department of Chemical Engineering and Materials Science. Universidad de Huelva. ETSI, Campus de "El Carmen", 21071 Huelva, Spain.
This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!