The coronavirus disease (COVID-19) caused by SARS-CoV-2 has caused a global pandemic. To manage and control the spread of the infection, it is crucial to develop and implement technologies for the early identification of infected individuals and rapid informatization in communities. For the realization of such a technology, a widely available and highly usable sensor for sensitive and specific assay of the virus plays a fundamental role. In this study, we developed an optical sensor based on an imprinted photonic crystal film (IPCF) for quick, simple, and cost-effective detection of SARS-CoV-2 spike protein in artificial saliva. Our IPCF sensor enabled label-free and highly sensitive detection with a smartphone-equipped optical setup. The IPCF surface was functionalized with an anti-SARS-CoV-2 spike protein antibody for immunoassay. We evaluated the specificity and sensitivity of the IPCF sensor for quantitative detection of the spike protein in artificial saliva using simple reflectometry with a spectrometer-equipped optical setup. Specific and quantitative detection of the spike protein was successfully achieved, with a low detection limit of 429 fg/mL. In the demonstration of reflectometric detection with a smartphone-equipped setup, the sensitivity was comparable with that with a spectrometer-equipped setup. The test result is returned immediately and can be saved to cloud storage. In addition, it costs less than USD 1 for one IPCF to be used for diagnosis. Thus, the developed IPCF has the potential to realize a widely available and highly usable sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026776 | PMC |
http://dx.doi.org/10.3390/bios12040200 | DOI Listing |
J Med Virol
January 2025
Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain.
We investigated whether antibody concentrations measured in plasma using the Roche Elecsys® Anti-SARS-CoV-2 S assay (targeting the receptor binding domain, RBD) could estimate levels of Wuhan-Hu-1 and Omicron XBB.1.5 spike-directed antibodies with neutralizing ability (NtAb) or those mediating NK-cell activity.
View Article and Find Full Text PDFObjectives: We assessed the transmission of SARS-CoV-2 and vaccine receipt in a representative sample of wet market workers in a highly dense, low-income setting. Wet markets are key in many Asian settings, including Dhaka, Bangladesh, for fresh food, including animal protein.
Methods: During early 2022, we assessed the prevalence of anti-SARS-CoV-2 antibodies in a random sample of poultry and vegetable workers in 15 wet markets, and investigated associations with socio-demographic characteristics and COVID-19 vaccination.
Biomed Pharmacother
January 2025
Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany. Electronic address:
The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD).
View Article and Find Full Text PDFPhysiol Res
December 2024
Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart.
View Article and Find Full Text PDFiScience
January 2025
Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
Whether Omicron exposures could overcome ancestral SARS-CoV-2 immune imprinting remains controversial. Here we analyzed B cell responses evoked by sequential Omicron infections in vaccinated and unvaccinated individuals. Plasma neutralizing antibody titers against ancestral SARS-CoV-2 and variants indicate that immune imprinting is not consistently induced by inactivated or recombinant protein vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!