The effortless detection of salient objects by humans has been the subject of research in several fields, including computer vision, as it has many applications. However, salient object detection remains a challenge for many computer models dealing with color and textured images. Most of them process color and texture and therefore implicitly consider them as independent features which is not the case in reality. Herein, we propose a novel and efficient strategy, through a simple model, almost without internal parameters, which generates a robust saliency map for a natural image. This strategy consists of integrating color information into local textural patterns to characterize a color micro-texture. It is the simple, yet powerful LTP (Local Ternary Patterns) texture descriptor applied to opposing color pairs of a color space that allows us to achieve this end. Each color micro-texture is represented by a vector whose components are from a superpixel obtained by the SLICO (Simple Linear Iterative Clustering with zero parameter) algorithm, which is simple, fast and exhibits state-of-the-art boundary adherence. The degree of dissimilarity between each pair of color micro-textures is computed by the FastMap method, a fast version of MDS (Multi-dimensional Scaling) that considers the color micro-textures' non-linearity while preserving their distances. These degrees of dissimilarity give us an intermediate saliency map for each RGB (Red-Green-Blue), HSL (Hue-Saturation-Luminance), LUV (L for luminance, U and V represent chromaticity values) and CMY (Cyan-Magenta-Yellow) color space. The final saliency map is their combination to take advantage of the strength of each of them. The MAE (Mean Absolute Error), MSE (Mean Squared Error) and β measures of our saliency maps, on the five most used datasets show that our model outperformed several state-of-the-art models. Being simple and efficient, our model could be combined with classic models using color contrast for a better performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027508 | PMC |
http://dx.doi.org/10.3390/jimaging8040110 | DOI Listing |
Surg Laparosc Endosc Percutan Tech
January 2025
Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Digestive Diseases of Anhui Province, Hefei, Anhui, China.
Objective: To investigate the role of endoscopic ultrasonography (EUS) in the diagnosis and treatment of upper gastrointestinal bleeding of unknown origin in liver cirrhosis, focusing on patients with recurrent treatment of esophageal and gastric varices who failed to identify the bleeding site under direct endoscopy.
Background: Esophagogastric variceal bleeding is one of the severe complications of decompensated liver cirrhosis, and serial endoscopic therapy can improve the long-term quality of life of patients. Most acute bleeding can be detected under direct endoscopy with thrombus or active bleeding, but there are still some patients with recurrent bleeding after repeated treatments, and it is difficult to find the bleeding site, especially in gastric variceal bleeding.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.
Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature.
View Article and Find Full Text PDFPlant Divers
November 2024
The Germplasm Bank of Wild Species, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
Descriptions of floral traits based on the visual capabilities of pollinators would advance our understanding of flower evolution and plant-pollinator relationships. One such trait is the contrasting UV bullseye color pattern, which is invisible to human eyes but can be perceived by bee pollinators. However, it remains largely unknown how UV bullseye size affects male and female reproductive fitness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!