Von Hippel-Lindau (VHL) genes are intimately involved in renal cell carcinoma (RCC), including clear cell RCC (ccRCC) pathogenesis. However, the contribution of pathogenic VHL mutations to ccRCC remains poorly understood. We report a xanthoderm with non-obstructive azoospermia (NOA)-associated cystic ccRCC, and the missense VHL mutation (c.262T > C, p.Try88Arg). In a 34-year-old patient, a urologic physical examination identified hard epididymis, and imaging tests revealed deferens-associated NOA, as well as multi-organ hydatid cysts, including bilateral epididymal cysts, bilateral testicular cysts, bilateral renal cysts, and pancreatic cysts. Five years later, ccRCC was developed based on clinical and radiologic evidence. Two different prediction models of protein structure and multiple sequence alignment across species were applied to assess the pathological effects of the VHL mutation. The reliability of the assessment in silico was determined by both the cellular location and protein levels of the mutant products, using IF and Western blot, respectively. Our study shows that the missense VHL mutation (c.262T > C, p.Try88Arg) plays a deleterious role in pVHL functions, as predicted by multiple sequence alignment across species. While a structural analysis identified no significant structural alterations in pVHL, the detrimental effects of this mutation were determined by exogenous expression, evidenced by a markedly different spatial distribution and reduced expression of mutant pVHL. This is the first report of the VHL gene mutation (c.475T > C, p.Try88Arg) in a xanthoderm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030033PMC
http://dx.doi.org/10.3390/curroncol29040192DOI Listing

Publication Analysis

Top Keywords

vhl mutation
16
mutation c262t
12
c262t ptry88arg
12
renal cell
8
cell carcinoma
8
missense vhl
8
cysts bilateral
8
multiple sequence
8
sequence alignment
8
alignment species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!