Phytoplankton are prominent organisms that contain numerous bioactive substances and secondary metabolites, including toxins, which can be valuable to pharmaceutical, nutraceutical, and biotechnological industries. Studies on toxins produced by phytoplankton such as cyanobacteria, diatoms, and dinoflagellates have become more prevalent in recent years and have sparked much interest in this field of research. Because of their richness and complexity, they have great potential as medicinal remedies and biological exploratory probes. Unfortunately, such toxins are still at the preclinical and clinical stages of development. Phytoplankton toxins are harmful to other organisms and are hazardous to animals and human health. However, they may be effective as therapeutic pharmacological agents for numerous disorders, including dyslipidemia, obesity, cancer, diabetes, and hypertension. In this review, we have focused on the properties of different toxins produced by phytoplankton, as well as their beneficial effects and potential biomedical applications. The anticancer properties exhibited by phytoplankton toxins are mainly attributed to their apoptotic effects. As a result, phytoplankton toxins are a promising strategy for avoiding postponement or cancer treatment. Moreover, they also displayed promising applications in other ailments and diseases such as Alzheimer's disease, diabetes, AIDS, fungal, bacterial, schizophrenia, inflammation, allergy, osteoporosis, asthma, and pain. Preclinical and clinical applications of phytoplankton toxins, as well as future directions of their enhanced nano-formulations for improved clinical efficacy, have also been reviewed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030253 | PMC |
http://dx.doi.org/10.3390/md20040271 | DOI Listing |
Harmful Algae
March 2025
Brigham Young University, Department of Biology, Provo, UT, USA. Electronic address:
Though freshwater harmful algal blooms have been described and studied for decades, several important dynamics remain uncertain, including the relationships among nutrient concentrations, phytoplankton growth, and cyanotoxin production. To identify when and where nutrients limit phytoplankton, cyanobacteria, and cyanotoxins, we conducted in situ bioassay studies. We added nitrogen (N), phosphorus (P), or N + P across various seasons in water collected from three locations across Utah Lake, one of the largest freshwater lakes in the western U.
View Article and Find Full Text PDFJ Environ Manage
March 2025
Center for the Management, Utilization, and Protection of Water Resources, Tennessee Technological University, Cookeville, TN, 38505, USA. Electronic address:
Riverine cyanobacterial blooms are increasing worldwide and are driven in large part by eutrophication. Despite substantial data on nutrient/bloom relationships in lakes and reservoirs, our understanding of nutrient mechanisms driving cyanobacterial blooms in rivers remains limited as rivers can have more complex temporal and spatial nutrient delivery. This study investigated how nutrient conditions influence cyanobacterial dominance and microcystin production in river phytoplankton.
View Article and Find Full Text PDFChemosphere
April 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
Human activities have led to an increase in atmospheric carbon dioxide (CO) concentration, which can enhance the flux of CO from air to water, thus impacting algal growth. Phosphorus (P) is a key factor influencing the formation of cyanobacteria blooms. Nutrient utilization is closely related to carbon (C) metabolism, but the effects of elevated CO on microalgae under different P sources are rarely studied.
View Article and Find Full Text PDFHarmful Algae
February 2025
Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:
The cyanobacterium Raphidiopsis raciborskii has received much attention due to its global distribution and toxin production in freshwater. However, research on understanding the potential factors facilitating its geographical spread, the pattern of increasing range, and long-distance dispersal (LDD) of this species is very limited. In this study, we investigated the role of migratory waterbirds (using domesticated ducks as a proxy) and reservoirs (lentic waterbodies) in global distribution or dispersal of R.
View Article and Find Full Text PDFHarmful Algae
February 2025
U.S. Environmental Protection Agency, Office of Research and Development, Gulf Breeze, FL, USA. Electronic address:
The excessive growth of harmful cyanobacteria, including Dolichospermum (formerly known as Anabaena), in freshwater bodies has become a pressing global concern. However, detailed information about the role of Dolichospermum in shaping bloom dynamics and producing cyanotoxins is limited. In this study, a bloom event dominated by Dolichospermum spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!