Here, we aimed to produce a natural food preservative using a crude extract from edible, immunized larvae (iTME), injected with edible bacteria using an edible solvent. Results showed that iTME had concentration-dependent inhibitory activity against food-poisoning bacteria , , and , as well as against harmful fungi , , and . Moreover, iTME showed antimicrobial activity against beneficial microorganisms and , but not . Furthermore, the minimum inhibitory concentration of iTME against , , and was 1 mg/mL, and iTME did not lose its inhibitory activity when treated at varying temperature, pH, and salinity. In addition, the antibacterial activity was lost after reacting the iTME with trypsin and chymotrypsin. The addition of iTME to Ganjang inoculated with harmful bacteria inhibited bacterial growth. Therefore, we propose that iTME can be used as a safe natural preservative to prolong food shelf life by inhibiting the growth of food-poisoning bacteria in a variety of foods, including traditional sauces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027733PMC
http://dx.doi.org/10.3390/insects13040381DOI Listing

Publication Analysis

Top Keywords

natural preservative
8
traditional sauces
8
itme
8
inhibitory activity
8
food-poisoning bacteria
8
potential antimicrobial
4
antimicrobial peptide-overexpressed
4
peptide-overexpressed larvae
4
larvae extract
4
extract natural
4

Similar Publications

In ovipositing animals, egg placement decisions can be key determinants of offspring survival. One oviposition strategy reported across taxa is laying eggs in clusters. In some species, mothers provision eggs with diffusible defence compounds, such as antimicrobials, raising the possibility of public good benefits arising from egg clustering.

View Article and Find Full Text PDF

Seaweed, a promising source of nutritional proteins, including protein hydrolysates, bioactive peptides, phycobiliproteins, and lectins with multi-biological activities. Seaweeds-derived proteins and peptides have attracted increasing interest for their potential applications in dietary supplements, functional foods, and pharmaceuticals industries. This work aims to comprehensively review the preparation methods and virtual screening strategies for seaweed-derived functional peptides.

View Article and Find Full Text PDF

Exploring novel antifungal peptides from peptic hydrolysis of chicken cruor protein via regression-based machine learning approach.

Food Chem

December 2024

Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada. Electronic address:

There is a growing interest in natural preservatives driven by consumer demand for clean-label products. In Canada, approximately 48 million liters of blood are produced annually during chicken slaughter, offering an opportunity to valorize cruor, the solid blood component rich in hemoglobin, for use in food preservation. This study investigated the hydrolysis of chicken cruor with pepsin at pH 2, 3, 4, and 5 for 180 min to produce antimicrobial peptides.

View Article and Find Full Text PDF

Food spoilage causes significant economic losses and endangers human health. Developing novel antimicrobial agents and preservatives is urgently needed for anti-foodborne diseases and improving food storage. Zhen Zhu Cai () species are well-known edible plants among the East Asian populace that clear heat and anti-aging.

View Article and Find Full Text PDF

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!