Fractures of the femur are a frequent problem in elderly people, and it has been demonstrated that treating them with a diagnostic-therapeutic-assistance path within 48 h of admission to the hospital reduces complications and shortens the length of the hospital stay (LOS). In this paper, the preoperative data of 1082 patients were used to further extend the previous research and to generate several models that are capable of predicting the overall LOS: First, the LOS, measured in days, was predicted through a regression analysis; then, it was grouped by weeks and was predicted with a classification analysis. The KNIME analytics platform was applied to divide the dataset for a hold-out cross-validation, perform a multiple linear regression and implement machine learning algorithms. The best coefficient of determination (R) was achieved by the support vector machine (R = 0.617), while the mean absolute error was similar for all the algorithms, ranging between 2.00 and 2.11 days. With regard to the classification analysis, all the algorithms surpassed 80% accuracy, and the most accurate algorithm was the radial basis function network, at 83.5%. The use of these techniques could be a valuable support tool for doctors to better manage orthopaedic departments and all their resources, which would reduce both waste and costs in the context of healthcare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029792PMC
http://dx.doi.org/10.3390/bioengineering9040172DOI Listing

Publication Analysis

Top Keywords

machine learning
8
regression analysis
8
length hospital
8
hospital stay
8
classification analysis
8
learning regression
4
analysis
4
analysis model
4
model length
4
stay patients
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!