A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cl-based functional group modification MIL-53(Fe) as efficient photocatalysts for degradation of tetracycline hydrochloride. | LitMetric

Cl-based functional group modification MIL-53(Fe) as efficient photocatalysts for degradation of tetracycline hydrochloride.

J Hazard Mater

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun 130021, Jilin, China. Electronic address:

Published: July 2022

MIL-53(Fe) catalyst has been widely used to treat the pollutants in water. However, the limited number of electrons in MIL-53(Fe) catalyst has always affected the rate at which Fe can be reduced to Fe. We modulated iron-based metal-organic frameworks (MOFs) using organic ligands modified with chlorine functional groups. The characterization results indicate that the 2Cl-MIL-53(Fe) catalyst exhibited the optimal photoelectric properties while maintaining the original structural characteristics. The experimental analyses and the first-principles study suggest that the introduction of a chlorine functional group not only reduced the band gap width and enhanced the visible-light absorption capacity, but also significantly enhanced the electron cloud density of Fe-O clusters. This could further accelerate the redox cycle of Fe(III)/Fe(II), beneficial for HO activation. The constructed Cl-MIL-53(Fe) catalyst exhibited a 3.8 times higher reaction rate constant than pure MIL-53(Fe) catalyst. The specific TCH degradation pathway and mechanism of 2Cl-MIL-53(Fe) treatment are proposed. This study provides a new strategy for iron-based MOFs as a heterogeneous photo-Fenton catalyst to degrade pollutants in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.128864DOI Listing

Publication Analysis

Top Keywords

mil-53fe catalyst
12
functional group
8
pollutants water
8
chlorine functional
8
catalyst exhibited
8
catalyst
6
cl-based functional
4
group modification
4
mil-53fe
4
modification mil-53fe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!