A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crocin attenuates NF-κB-mediated inflammation and proliferation in breast cancer cells by down-regulating PRKCQ. | LitMetric

Crocin attenuates NF-κB-mediated inflammation and proliferation in breast cancer cells by down-regulating PRKCQ.

Cytokine

Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China.

Published: June 2022

Breast cancer (BC) is the most commonly diagnosed cancer confronting women worldwide. Crocin, a glycosylated carotenoid extracted from Crocus sativus L., possesses anti-cancer and anti-inflammatory activities. This study tried to explore the influences of crocin on proliferation and inflammation of BC cells, and to investigate the possible mechanism. The protein levels of protein kinase C theta (PRKCQ) and nuclear factor kappa B (NF-κB) p-p65 and p65 were examined using western blot analysis. The potential targets of crocin were predicted using the PharmMapper database. Cell viability and proliferation were determined utilizing CCK-8 and EdU incorporation assays, respectively. Inflammation was assessed by detecting the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) using RT-qPCR and ELISA. Results showed that crocin inhibited NF-κB activation and suppressed cell viability and proliferation in BC cells. Crocin caused a significant reduction of levels of TNF-α and IL-1β, suggesting that crocin suppressed inflammation in BC cells. NF-κB inhibition decreased proliferation and inflammation in BC cells. Additionally, PRKCQ was identified as a potential target of crocin according to PharmMapper database. Crocin treatment inhibited the activation of NF-κB in BC cells by reducing PRKCQ expression. Mechanistically, PRKCQ-dependent activation of NF-κB pathway reversed the effects of crocin on the proliferation and inflammation in BC cells. In conclusion, crocin inhibited NF-κB-mediated inflammation and proliferation in BC cells through reducing PRKCQ expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2022.155888DOI Listing

Publication Analysis

Top Keywords

inflammation cells
16
proliferation inflammation
12
crocin
11
nf-κb-mediated inflammation
8
inflammation proliferation
8
breast cancer
8
cells
8
crocin proliferation
8
pharmmapper database
8
cell viability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!