A multi-regression approach to improve optical coherence tomography diagnostic accuracy in multiple sclerosis patients without previous optic neuritis.

Neuroimage Clin

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemical and Biological Engineering, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland. Electronic address:

Published: May 2022

Background: Optical coherence tomography (OCT) is a retinal imaging system that may improve the diagnosis of multiple sclerosis (MS) persons, but the evidence is currently equivocal. To assess whether compensating the peripapillary retinal nerve fiber layer (pRNFL) thickness for ocular anatomical features as well as the combination with macular layers can improve the capability of OCT in differentiating non-optic neuritis eyes of relapsing-remitting MS patients from healthy controls.

Methods: 74 MS participants (n = 129 eyes) and 84 age- and sex-matched healthy controls (n = 149 eyes) were enrolled. Macular ganglion cell complex (mGCC) thickness was extracted and pRNFL measurement was compensated for ocular anatomical factors. Thickness measurements and their corresponding areas under the receiver operating characteristic curves (AUCs) were compared between groups.

Results: Participants with MS showed significantly thinner mGCC, measured and compensated pRNFL (p ≤ 0.026). Compensated pRNFL achieved better performance than measured pRNFL for MS differentiation (AUC, 0.75 vs 0.80; p = 0.020). Combining macular and compensated pRNFL parameters provided the best discrimination of MS (AUC = 0.85 vs 0.75; p < 0.001), translating to an average improvement in sensitivity of 24 percent for differentiation of MS individuals.

Conclusion: The capability of OCT in MS differentiation is made more robust by accounting OCT scans for individual anatomical differences and incorporating information from both optic disc and macular regions, representing markers of axonal damage and neuronal injury, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043868PMC
http://dx.doi.org/10.1016/j.nicl.2022.103010DOI Listing

Publication Analysis

Top Keywords

compensated prnfl
12
optical coherence
8
coherence tomography
8
multiple sclerosis
8
ocular anatomical
8
prnfl
6
multi-regression approach
4
approach improve
4
improve optical
4
tomography diagnostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!