This paper examines and projects the water use and wastewater generation during and after the SARS-CoV-2 (COVID-19) in China, and discussed the water use/wastewater generation pattern changes among different sectors. Existing studies on the impact of pandemic spread-prevention measures on water consumption and wastewater treatment during the pandemic are reviewed. The water use and wastewater discharge in China through the COVID-19 period are then projected and analyzed using Multivariate Linear Regression. The projection is carried out for years 2019-2023 and covers an (estimated) full process of pre-pandemic, pandemic outbreak, and recovery phase and provides essential information for determining the complete phase impact of the COVID-19. Two scenarios, i.e. the recovery scenario and the business as usual scenario, are set to investigate the water use and wastewater generation characteristics after the pandemic. The results imply that in both scenarios, the water use in China shows a V-shaped trend from 2019 to 2023 and reached a low point in 2020 of 5,813✕10 m. The wastewater discharge shows an increasing trend throughout the COVID period in both scenarios. The results are also compared with the water consumption and wastewater generation during the SARS-CoV-1 period. The implication for policymakers is the possible increase of water use and wastewater discharge in the post COVID period and the necessity to ensure the water supply and control of water pollution and wastewater discharge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986492 | PMC |
http://dx.doi.org/10.1016/j.jenvman.2022.115024 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Chemistry, University of North Texas1508 W Mulberry St, Denton, TX, 76201, USA.
Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, PR China. Electronic address:
The efficient removal of Mn(II) from wastewater is crucial for safeguarding water quality, yet existing adsorbents face significant challenges, including high costs, poor resistance to ionic interference, and scalability limitations. This study addresses these challenges by utilizing abundant natural sandy sediment (SS) as a substrate to load unsaturated MnO via in-situ oxidation, creating a novel adsorbent (MOSS). MOSS exhibits a remarkable Mn(II) adsorption capacity of 1.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Jeffrey Sachs Center on Sustainable Development, Sunway University, 47500, Sunway City, Selangor, Malaysia.
Wastewater treatment plant (WWTP) is a sustainable technique for making wastewater reusable for non-potable purposes. However, in developing countries, most conventional WWTPs are not equipped to trap all pharmaceutical residues (PRs) and pharmaceutically active chemicals (PhACs). This study aims to perform non-target screening of these contaminants in wastewater and explore health and environmental hazards and the removal efficiency of a WWTP in Malaysia.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!