Serotonin is an endogenous neurotransmitter involved in both physiological and pathophysiological processes. Traditionally, serotonin acts as a ligand for G protein-coupled receptors (GPCRs) leading to subsequent cell signaling. However, serotonin can also bind to lipid membranes with high affinity and modulate the phase behavior in 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/N-palmitoyl-D-erythro-sphingosylphosphorylcholine (PSM)/cholesterol model membranes mimicking the outer leaflet of the plasma membrane. Here, we investigated if serotonergic drugs containing the pharmacophore from serotonin would also modulate phase behavior in lipid membranes in a similar fashion. We used H NMR spectroscopy to explore the phase behavior of POPC/PSM/cholesterol (4/4/2 molar ratio) mixtures in the presence of the serotonergic drugs aripiprazole, BRL-54443, BW-723C86, and CP-135807 at a lipid to drug molar ratio of 10:1. POPC and PSM were perdeuterated in the palmitoyl chain, respectively, and prepared in individual samples. Numerical lineshape simulations of the H NMR spectra were used to calculate the order parameter profiles and projected lengths of the saturated acyl chains. All serotonergic drugs induce two components in H NMR spectra, indicating that they increased the hydrophobic mismatch between the thickness of the coexisting lipid phases leading to larger domain sizes, relatively similarly to serotonin. AFM force indentation and Raman spectral studies, which interrogate membrane mechanical properties, also indicate changes in membrane order in the presence of these drugs. These findings highlight how serotonergic drugs alter membrane phase behavior and could modulate both target and other membrane proteins, possibly explaining the side effects observed for serotonergic and other clinically relevant drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2022.04.006 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary.
Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Immunology Laboratory (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico.
Sertraline, a selective serotonin reuptake inhibitor (SSRI), is commonly used to treat various psychiatric disorders such as depression and anxiety due to its ability to increase serotonin availability in the brain. Recent findings suggest that sertraline may also influence the expression of genes related to synaptic plasticity and neuronal signaling pathways. Alternative splicing, a process that allows a single gene to produce multiple protein isoforms, plays a crucial role in the regulation of neuronal functions and plasticity.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Faculty of Medicine, Transilvania University of Brasov, 500036 Braşov, Romania.
: Endothelial dysfunction (ED) and oxidative stress play major contributions in the initiation and progression of atherosclerosis. Diabetes is a pathological state associated with endothelial damage and enhanced oxidative stress. This study evaluated endothelial dysfunction and oxidative stress in patients with severe coronary artery disease (CAD) undergoing coronary artery bypass graft (CABG) surgery, comparing those with and without type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!