In this paper, a novel denoising method for electrocardiogram (ECG) signal is proposed to improve performance and availability under multiple noise cases. The method is based on the framework of conditional generative adversarial network (CGAN), and we improved the CGAN framework for ECG denoising. The proposed framework consists of two networks: a generator that is composed of the optimized convolutional auto-encoder (CAE) and a discriminator that is composed of four convolution layers and one full connection layer. As the convolutional layers of CAE can preserve spatial locality and the neighborhood relations in the latent higher-level feature representations of ECG signal, and the skip connection facilitates the gradient propagation in the denoising training process, the trained denoising model has good performance and generalization ability. The extensive experimental results on MIT-BIH databases show that for single noise and mixed noises, the average signal-to-noise ratio (SNR) of denoised ECG signal is above 39 dB, and it is better than that of the state-of-the-art methods. Furthermore, the denoised classification results of four cardiac diseases show that the average accuracy increased above 32 % under multiple noises under SNR=0 dB. So, the proposed method can remove noise effectively as well as keep the details of the features of ECG signals.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2022.3169325DOI Listing

Publication Analysis

Top Keywords

ecg signal
16
denoising method
8
conditional generative
8
generative adversarial
8
ecg
6
denoising
5
signal denoising
4
method
4
method conditional
4
adversarial net
4

Similar Publications

A Deep Learning Approach for Mental Fatigue State Assessment.

Sensors (Basel)

January 2025

Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China.

This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.

View Article and Find Full Text PDF

Generally, the electrocardiography (ECG) system plays an important role in preventing and diagnosing heart diseases. To further improve the amenity and convenience of using an ECG system, we built a customized capacitive electrocardiography (cECG) system with one wet electrode, sixteen non-contact electrodes, two ADS1299 chips, and one STM32F303-based microcontroller unit (MCU). This new cECG system could acquire, save, and display the ECG data in real time.

View Article and Find Full Text PDF

A knowledge embedded multimodal pseudo-siamese model for atrial fibrillation detection.

Sci Rep

January 2025

School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, People's Republic of China.

Atrial fibrillation (AF) is a common arrhythmia disease with a higher incidence rate. The diagnosis of AF is time-consuming. Although many ECG classification models have been proposed to assist in AF detection, they are prone to misclassifying indistinguishable noise signals, and the context information of long-term signals is also ignored, which impacts the performance of AF detection.

View Article and Find Full Text PDF

Diabetes is a chronic condition, and traditional monitoring methods are invasive, significantly reducing the quality of life of the patients. This study proposes the design of an innovative system based on a microcontroller that performs real-time ECG acquisition and evaluates the presence of diabetes using an Edge-AI solution. A spectrogram-based preprocessing method is combined with a 1-Dimensional Convolutional Neural Network (1D-CNN) to analyze the ECG signals directly on the device.

View Article and Find Full Text PDF

Detecting anomalies in smart wearables for hypertension: a deep learning mechanism.

Front Public Health

January 2025

Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.

Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!