Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c02251 | DOI Listing |
Aesthetic Plast Surg
January 2025
Department of Plastic, Reconstructive and Aesthetic Surgery, Academic Hospital Feldkirch, Carinagasse 47, 6807, Feldkirch, Austria.
Introduction: Primary axillary hyperhidrosis significantly impacts the quality of life of affected individuals. miraDry, a non-invasive local precisely controlled thermal energy procedure, represents a promising treatment option. This retrospective analysis aimed to evaluate the treatment success and patient safety following miraDry procedure in the treatment of primary axillary hyperhidrosis.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Pranveer Singh Institute of Technology, Pharmacy, Kanpur, India.
Carbon nanotubes (CNTs) has emerged as a promising nanomaterial with a wide range of potential applications due to their unique structural, mechanical, electrical, and thermal properties. However, numerous obstacles must be overcome for CNTs to be used successfully, including low solubility, aggregation, and a lack of specialized functions. Diverse techniques have been developed for the manufacture, purification, and functionalization of CNTs in order to overcome these issues.
View Article and Find Full Text PDFFood Chem
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Heat treatment is the most common processing method in Apostichopus japonicus (A. japonicus) processing. However, improper heat treatment can lead to the degradation of protein.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Health concerns are increasingly prevalent due to aging populations and lifestyle-related diseases. Concurrently, modern consumers seek natural alternatives and are wary of medication side effects, emphasizing the importance of natural compounds for health maintenance. Functional mushrooms, known for their adaptogenic properties, offer health benefits beyond nutrition and are valued as nutraceuticals and functional foods.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!