Controlled transport of liquid droplets on solid surfaces is critical in many practical applications, such as self-cleaning surfaces, coating, drug delivery, and agriculture. Non-adhesive liquid drops levitate on solid surfaces; therefore, they are highly mobile and directed toward desired locations by external stimuli. Although research on liquid-repellent surfaces has proliferated, the existing methods are still limited to creating surface roughness or coating the liquid droplets. Here, we create non-contact aqueous drops on hydrophilic surfaces in an oleic environment and use them to deposit submicrometer droplets encapsulating nanoparticles on solid surfaces. A glass surface is buried under an oil phase that contains a high concentration of Span 80 surfactants, and a drop of silica nanoparticle dispersion is released on the solid surface. We study the effect of surfactant concentration in oil and nanoparticle concentration in water on wetting dynamics and report a plethora of droplet spreading regimes from fully wetting to non-wetting. We find a threshold Span 80 concentration above which surfactant assemblies are formed on the solid and prevent the direct contact of the drop with the surface. At the same time, water-in-oil emulsions are generated at the drop-oil interface. The drop moves and leaves a trace of emulsions with encapsulated nanoparticles on the solid. We demonstrate the possibility of local surface coating with hydrophilic nanoparticles in a hydrophobic medium. The developed methodology in this study is a generic approach facilitating the droplet patterning in numerous applications, from pharmaceutical polymetric carriers to the formulation of cosmetics, insecticides, and biomedical diagnoses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c03156 | DOI Listing |
Acta Crystallogr D Struct Biol
February 2025
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
P-clusters have been statistically analysed using the bond-valence sum (BVS) method together with weighting schemes. The crystallographic data come from the VFe proteins deposited in the Protein Data Bank (PDB) with high resolutions of better than 1.35 Å.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Future Technology College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
Many diseases and pests are fond of the backs of leaves, making wraparound deposition essential for enhancing agrochemical utilization and minimizing environmental hazards. We present a superhydrophobic surface decorated with fluorinated-SiO nanoparticles on the adaxial (front) side, improving sprayed droplet wraparound behaviors and achieving a 10-fold increase in abaxial (backside) deposition without using an electrostatic sprayer. Solid-liquid contact electrification boosts the positive charge-to-mass ratio of rebound spraying from 17 to 454 nC g, with the abaxial surface acquiring opposite electric charges at kilovolt-level voltages.
View Article and Find Full Text PDFInhal Toxicol
January 2025
Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
: Pulmonary exposure to emissions from manipulating solid surface composite (SSC) materials has been associated with adverse health effects in humans and laboratory animals. Previous and investigations of SSC toxicity have been limited by particle delivery methods that do not fully recapitulate the workplace environment. This study sought to determine the acute SSC-induced pulmonary responses whole-body inhalation exposure.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.
Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications.
View Article and Find Full Text PDFACS Food Sci Technol
January 2025
Department of Food Technology, Engineering and Science, Universitat de Lleida - Agrotecnio CeRCA Center, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
Enzyme catalysis is important in food processing, such as in baking, dairy, and fiber processing and beverages. A recent advancement in catalysis is the development of Pickering emulsions as enzymatic catalytic systems; however, the use of Pickering emulsions (PEs) as catalytic systems in foods remains largely underdeveloped. Challenges exist that inhibit the widespread adoption of PEs as catalytic systems in foods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!