We have established a self-calibrated method, called pbFFS for photobleaching fluctuation fluorescence spectroscopy, which aims to characterize molecules or particles labeled with an unknown distribution of fluorophores. Using photobleaching as a control parameter, pbFFS provides information on the distribution of fluorescent labels and a reliable estimation of the absolute density or concentration of these molecules. We present a complete theoretical derivation of the pbFFS approach and experimentally apply it to measure the surface density of a monolayer of fluorescently tagged streptavidin molecules, which can be used as a base platform for biomimetic systems. The surface density measured by pbFFS is consistent with the results of spectroscopic ellipsometry, a standard surface technique. However, pbFFS has two main advantages: it enables in situ characterization (no dedicated substrates are required) and can be applied to low masses of adsorbed molecules, which we demonstrate here by quantifying the density of biotin-Atto molecules that bind to the streptavidin layer. In addition to molecules immobilized on a surface, we also applied pbFFS to molecules diffusing in solution, to confirm the distribution of fluorescent labels found on a surface. Hence, pbFFS provides a set of tools for investigating the molecules labeled with a variable number of fluorophores, with the aim of quantifying either the number of molecules or the distribution of fluorescent labels, the latter case being especially relevant for oligomerization studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c05513DOI Listing

Publication Analysis

Top Keywords

surface density
12
distribution fluorescent
12
fluorescent labels
12
molecules
9
pbffs
7
surface
6
density
5
combining fluorescence
4
fluorescence fluctuations
4
fluctuations photobleaching
4

Similar Publications

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

This study tested whether combined ceftriaxone and adipose-derived mesenchymal stem cells (ADMSCs) would defend the spinal cord against acute spinal infection (ASI) in rodent. Adult-Male-SD rats were grouped into groups 1 (SC)/2 (ASI)/3 (ASI + ceftriaxone from days 2 to 28 after ASI induction)/4 (ASI + allogenic ADMSCs from day 2 for a total of 3 doses/3 consecutive intervals by intravenous injection)/5 (ASI + combined ceftriaxone and ADMSC) and spinal cord tissues were harvested by day 28. Circulatory levels of TNF-α/IL-6 at days 7 and 28, and these two parameters in spinal fluid at day 28 were lowest in group 1, highest in group 2, significantly lower in group 5 than in groups 3/4, and significantly lower in group 3 than in group 4 (all p < 0.

View Article and Find Full Text PDF

Halide perovskites have attracted recent attention as thermoelectric materials due to their low thermal conductivity combined with good charge transport characteristics. The tin halide perovskites hold the highest within metal halide perovskites and offer lower toxicity than lead-containing perovskites that are well-known for photovoltaics. In this study, we partially substitute Sn (II) with Ge (II) to form mixed metal CsSnGeI perovskite thin films that have substantially improved stability, remaining in the black orthorhombic phase after hours of ambient air exposure.

View Article and Find Full Text PDF

Selenium Interface Layers Boost High Mobility and Switch Ratios in van der Waals Electronics.

Nano Lett

January 2025

Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China.

Achieving high mobility while minimizing off-current and static power consumption is critical for applications of two-dimensional field-effect transistors. Herein, a selenium (Se) sacrificial layer is introduced between the rhenium sulfide (ReS) semiconductor and source/drain electrode. With the Se layer and postannealing process, the ReS transistor significantly decreases the off-state current with a substantial increase in the on-state current density.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!