There is a current interest in healthy diets and supplements, indicating the relevance of novel delivery systems for plant extracts rich in bioactive compounds and probiotics. This simultaneous delivery system can be prospective for health. In this sense, investigating foods rich in bioactive compounds or supplemented by them for incorporating probiotics and some approaches to improve probiotic survivability, such as the choice of resistant probiotic strains or microencapsulation, is valuable. This review addresses a brief discussion about the role of phenolic compounds, chlorophyll and carotenoids from plants and probiotics in gut health, indicating the benefits of this association. Also, an overview of delivery systems used in recent studies is shown, considering their advantages for incorporation in food matrices. Delivery systems containing compounds recovered from plants can reduce probiotic oxidative stress, improving survivability. However, investigating the beneficial concentration of some bioactive compounds from plant extracts is relevant due to their antimicrobial potential. In addition, further clinical trials and toxicological studies of plant extracts are pertinent to ensure safety. Thus, the recovery of extracts from plants emerges as an alternative to providing multiple compounds with antioxidant potential, increasing the preservation of probiotics and allowing the fortification or enrichment of food matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2022.2066623 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemistry, Banasthali Vidhyapith, Banasthali, Rajasthan, 304022, India.
Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Post Graduate Program in Food Science and Technology, Federal University of Sergipe, Av. Marcelo Deda Chagas, s/n, Jardim Rosa Elze, São Cristóvão, 49100-000, SE, Brazil.
The plant specie, lemon balm (Melissa officinalis L.) is one of the most important species of the Lamiaceae family and its use as a plant extract has been highlighted by the population and the scientific community due to its rich chemical composition and the presence of bioactive compounds with potential antioxidant activity, associated with various health benefits. Research and development of innovative technologies are focused on the identification of these substances, their properties and applications.
View Article and Find Full Text PDFEur J Histochem
January 2025
Traditional Chinese Medicine Studio, The First Affiliated Hospital of Xiamen University; Integrated Traditional Chinese and Western Medicine Center, School of Medicine, Xiamen University, Xiamen.
This corrects the article published in European Journal of Histochemistry 2024;68:4140 doi: 10.4081/ejh.2024.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China.
Plant- and marine-derived natural products are rich sources of bioactive compounds essential for drug discovery. These compounds contain complex mixtures of metabolites, which collectively contribute to their pharmacological properties. However, challenges arise in the isolation of individual bioactive compounds, owing to their intricate chemistry and low abundance in natural extracts.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People's Republic of China.
Purpose: This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN.
Methods: In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!