From Dynamic Superwettability to Ionic/Molecular Superfluidity.

Acc Chem Res

Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Published: May 2022

Life systems present ultralow energy consumption in high-efficiency energy conversion, information transmission, and biosynthesis. The total energy intake of the human body is about 2000 kcal/day to maintain all of our activities, which is comparable to a power of ∼100 W. The energy required for the brain to work is equivalent to ∼20 W, and the rest of the energy (∼80 W) is used for other activities. All in vivo biosyntheses take place only at body temperature, which is much lower than that of in vitro reactions. To achieve these ultralow energy-consumption processes, there should be a kind of ultralow-resistivity matter transport in nanochannels (e.g., ionic and molecular channels), in which the directional collective motion of ions or molecules is a necessary condition rather than traditional Newton diffusion. The directional collective motion of ions and molecules is considered to be ionic/molecular superfluidity. The driving force of ionic/molecular superfluidity formation requires two necessary conditions: (1) Ions or molecules are confined at a certain distance (e.g., approximately twice Debye length (2λ) for ions or twice the van der Waals equilibrium distance (2) for molecules). (2) When the attractive potential energy () is stronger than the thermal noise (), ionic/molecular superfluidity can be formed. The concept of ionic/molecular superfluidity will promote the understanding of energy conversion with ultralow energy consumption in biological systems. The swing of an eel's body generating electricity and cardiac resuscitation denote the conversion from mechanical energy to electrical energy, and mechanical modulation might result in a coherent resonance of ionic motion. The coherent resonance of Ca in myocardium cells can induce a heartbeat, realizing the conversion from the electrical energy to the mechanical energy of a biological system. The macroscopic quantum state of ion channels is considered to be a carrier of neural information, and the environment field might play a significant role in regulating the macroscopic quantum states of various ion channels. In the biological ion channels system, the coupling of ion channels and their released photons might induce an environment wave which in turn regulates the ion oscillations in the channels to a coherent state. The states of decoherence and coherence might correspond to the states of sleep and action. We also demonstrated the decomposition of ATP to ADP released photons with a frequency of ∼34 THz, which could further drive DNA polymerization in the nanocavity of DNA polymerase. The photochemical (mid- and far-IR) reaction might be the driving force in high-efficiency biosynthesis. Quantized syntheses resonantly driven by multiple mid- and far-IR photons could be further designed in a tubular reactor with membranes of different microporous structures to achieve a high-efficiency synthesis with a low energy consumption. Finally, we point out that the Bose-Einstein condensate potentially widely exists. We expect that this Account will provide new ideas for the key problem in life science: how can life systems present ultralow energy consumption in high-efficiency energy conversion, information transmission, and biosynthesis?

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.2c00053DOI Listing

Publication Analysis

Top Keywords

ionic/molecular superfluidity
20
energy consumption
16
ion channels
16
energy
15
ultralow energy
12
energy conversion
12
ions molecules
12
life systems
8
systems ultralow
8
consumption high-efficiency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!