Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increasing phosphorus (P) inputs induced by anthropogenic activities have increased P availability in soils considerably, with dramatic effects on carbon (C) cycling and storage. However, the underlying mechanisms via which P drives plant and microbial regulation of soil organic C (SOC) formation and stabilization remain unclear, hampering the accurate projection of soil C sequestration under future global change scenarios. Taking the advantage of an 8-year field experiment with increasing P addition levels in a subalpine forest on the eastern Tibetan Plateau, we explored plant C inputs, soil microbial communities, plant and microbial biomarkers, as well as SOC physical and chemical fractions. We found that continuous P addition reduced fine root biomass, but did not affect total SOC content. P addition decreased plant lignin contribution to SOC, primarily from declined vanillyl-type phenols, which was coincided with a reduction in methoxyl/N-alkyl C by 2.1%-5.5%. Despite a decline in lignin decomposition due to suppressed oxidase activity by P addition, the content of lignin-derived compounds decreased because of low C input from fine roots. In contrast, P addition increased microbial (mainly fungal) necromass and its contribution to SOC due to the slower necromass decomposition under reduced N-acquisition enzyme activity. The larger microbial necromass contribution to SOC corresponded with a 9.1%-12.4% increase in carbonyl C abundance. Moreover, P addition had no influence on the slow-cycing mineral-associated organic C pool, and SOC chemical stability indicated by aliphaticity and recalcitrance indices. Overall, P addition in the subalpine forest over 8 years influenced SOC composition through divergent alterations of plant- and microbial-derived C contributions, but did not shape SOC physical and chemical stability. Such findings may aid in accurately forecasting SOC dynamics and their potential feedbacks to climate change with future scenarios of increasing soil P availability in Earth system models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!