Mechanisms of weakness in Mdx muscle following in vivo eccentric contractions.

J Muscle Res Cell Motil

Division of Rehabilitation Science, Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, USA.

Published: June 2022

Skeletal muscle of the dystrophin-deficient mdx mouse is hypersensitive to eccentric (ECC) contraction-induced strength loss due to plasmalemmal electrical dysfunction. Despite plasmalemmal inexcitability being a logical mechanism responsible for weakness, it remains unclear if processes up- and/or down-stream remain functionally intact in injured mdx muscle. The purpose of this study was to analyze additional processes necessary for excitation-contraction coupling that are potentially disrupted by ECC contractions. Anterior crural muscles (tibialis anterior, extensor digitorum longus [EDL], and extensor hallucis muscles) of wildtype (WT) and mdx mice were injured in vivo with 50 ECC contractions and torque was measured immediately before and after the contraction bout. Following the in vivo assessment, EDL ex vivo isometric and caffeine forces were analyzed. In vivo isometric torque and ex vivo force in WT muscle were reduced 38 and 30% (p < 0.001), while caffeine force was also reduced (p = 0.021), albeit to a lesser degree (9%). In contrast, in vivo isometric torque, ex vivo isometric force and ex vivo caffeine-induced force were all reduced 56-67% (p < 0.001) in mdx muscle and did not differ from one another (p = 0.114). Disproportional reductions in isometric strength and caffeine-induced force confirm that ECC contractions uncoupled the plasmalemma from the ryanodine receptors (RyRs) in WT muscle. In mdx muscle, the proportional reductions in isometric strength and caffeine-induced force following ECC contractions reveal that dysfunction occurs at and/or distal to the RyRs immediately post-injury. Thus, weakness in injured mdx muscle cannot be isolated to one mechanism, rather several steps of muscle contraction are disrupted.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10974-022-09617-1DOI Listing

Publication Analysis

Top Keywords

mdx muscle
8
ecc contractions
8
vivo isometric
8
vivo
6
mechanisms weakness
4
mdx
4
weakness mdx
4
muscle
4
muscle vivo
4
vivo eccentric
4

Similar Publications

CTLA4-Ig reduces muscle fiber damage in a model of Duchenne muscular dystrophy by attenuating pro-inflammatory gene expression in myeloid lineage cells.

Am J Pathol

January 2025

Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095. Electronic address:

Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a CTLA4-Ig fusion protein that blocks costimulatory signals required for activation of T-cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T-cells, macrophages and antigen presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers.

View Article and Find Full Text PDF

Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!