Contact chemoreception in multi-modal sensing of prey by Octopus.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

Marine Biological Laboratory, 7 MBL St, Woods Hole, MA, 02543, USA.

Published: May 2022

Octopuses have keen vision and are generally considered visual predators, yet octopuses predominantly forage blindly in nature, inserting their arms into crevices to search and detect hidden prey. The extent to which octopuses discriminate prey using chemo- versus mechano-tactile sensing is unknown. We developed a whole-animal behavioral assay that takes advantage of octopuses' natural searching behavior to test their ability to discriminate prey from non-prey tastes solely via contact chemoreception. This methodology eliminated vision, mechano-tactile sensing and distance chemoreception while testing the contact chemosensory discriminatory abilities of the octopus arm suckers. Extracts from two types of prey (crab, shrimp) and three types of non-prey (sea star, algae, seawater) were embedded in agarose (to control for mechano-tactile discrimination) and presented to octopuses inside an artificial rock dome; octopuses reached their arms inside to explore its contents - imitating natural prey-searching behavior. Results revealed that octopuses are capable of discriminating between potential prey items using only contact chemoreception, as measured by an increased amount of sucker contact time and arm curls when presented with prey extracts versus non-prey extracts. These results highlight the importance of contact chemoreception in the multi-modal sensing involved in a complex foraging behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00359-022-01549-yDOI Listing

Publication Analysis

Top Keywords

contact chemoreception
12
chemoreception multi-modal
8
multi-modal sensing
8
discriminate prey
8
mechano-tactile sensing
8
prey
7
contact
6
octopuses
6
sensing
4
sensing prey
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!