In the present study, we used an unsupervised classification algorithm to reveal both consistency and degeneracy in neural network connectivity during anger and anxiety. Degeneracy refers to the ability of different biological pathways to produce the same outcomes. Previous research is suggestive of degeneracy in emotion, but little research has explicitly examined whether degenerate functional connectivity patterns exist for emotion categories such as anger and anxiety. Twenty-four subjects underwent functional magnetic resonance imaging (fMRI) while listening to unpleasant music and self-generating experiences of anger and anxiety. A data-driven model building algorithm with unsupervised classification (subgrouping Group Iterative Multiple Model Estimation) identified patterns of connectivity among 11 intrinsic networks that were associated with anger vs anxiety. As predicted, degenerate functional connectivity patterns existed within these overarching consistent patterns. Degenerate patterns were not attributable to differences in emotional experience or other individual-level factors. These findings are consistent with the constructionist account that emotions emerge from flexible functional neuronal assemblies and that emotion categories such as anger and anxiety each describe populations of highly variable instances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629478PMC
http://dx.doi.org/10.1093/scan/nsac028DOI Listing

Publication Analysis

Top Keywords

anger anxiety
20
unsupervised classification
12
consistency degeneracy
8
degeneracy neural
8
neural network
8
degenerate functional
8
functional connectivity
8
connectivity patterns
8
emotion categories
8
categories anger
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!