Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- "the guardian of genome stability and epigenetic information" controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014011 | PMC |
http://dx.doi.org/10.3389/fcell.2022.767773 | DOI Listing |
Pathologica
December 2024
Department of Pharmacy, University of Salerno, Italy.
Objective: This study investigated metformin as a sensitizer for radiotherapy in oral squamous cell carcinoma (OSCC) to reduce the radiation intensity. It evaluated the drug's effect on Chromatin Assembly Factor-1 (CAF-1) expression, whose high levels correlate with worse prognosis of this cancer.
Methods: The effects of metformin, alone and with radiotherapy, were evaluated on CAL27 (HPV-) and SCC154 (HPV+) OSCC cells.
Sci Rep
January 2025
Centre of New Technologies, University of Warsaw, Warsaw, Poland.
Regulation of the Hedgehog pathway activity may be supported by coactivators and corepresors of its main effectors- Gli transcription factors. While activation processes are well studied, repression mechanisms remain elusive. We identified chromatin remodelling complex Hira to interact with Gli3R protein, showed that its loss-of-function changes Hh pathway activity, and examined possible mechanism behind the observed effect.
View Article and Find Full Text PDFAnnu Rev Biophys
December 2024
Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA; email:
In this article I review mechanisms that underpin epigenetic inheritance of CpG methylation and histone H3 lysine 9 methylation (H3K9me) in chromatin in fungi and mammals. CpG methylation can be faithfully inherited epigenetically at some sites for a lifetime in vertebrates and, remarkably, can be propagated for millions of years in some fungal lineages. Transmission of methylation patterns requires maintenance-type DNA methyltransferases (DNMTs) that recognize hemimethylated CpG DNA produced by replication.
View Article and Find Full Text PDFMol Cell
December 2024
Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
In this issue of Molecular Cell, Sun et al. reveal that the long non-coding RNA (lncRNA) DNAJC3-AS1 plays a dual role in maintaining the rRNA processing function of fibrillarin (FBL) in cancer cells. It promotes FBL condensation while preventing abnormal aggregation, offering new therapeutic insights for cancer treatment by targeting lncRNAs involved in the regulation of FBL condensation.
View Article and Find Full Text PDFSci Rep
December 2024
Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany.
Testicular cell differentiation is a highly regulated process, essential for male reproductive health. The histone variant H3.5 is apparently a critical player in this intricate orchestra of cell types, but its regulation and function remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!