People with diabetic peripheral neuropathy (DPN) are usually accompanied with increased plantar pressure. Such high plantar loading during daily activities may cause changes in the biomechanical properties of plantar soft tissue, whose viability is critical to the development of foot ulcers. This study aimed to investigate the relationship between plantar tissue hardness and plantar pressure in people with and without DPN, and preliminarily explore the influence of plantar loading patterns on the plantar pressure and tissue hardness. The study was conducted on 14 people with DPN and 14 diabetic people without DPN. The Shore durometer and MatScan System were used to measure the plantar tissue hardness and plantar pressure, respectively. The plantar loading level was evaluated by the duration of daily weight-bearing activity and was used to group diabetic participants with and without DPN into two subgroups (lower loading group and higher loading group). The plantar tissue hardness was significantly correlated with static peak plantar pressure (PPP, < 0.05) and dynamic pressure-time integral (PTI, < 0.05) in the forefoot region in people with DPN. Results of variance analysis showed a significant interaction effect between peripheral neuropathy and plantar loading on tissue hardness ( < 0.05), but not plantar pressure. For people with DPN, significant differences in tissue hardness between the higher loading group and lower loading group were observed in the forefoot, midfoot and hindfoot regions. In the higher loading group, people with DPN had significantly greater tissue hardness than that in people without DPN in the toes, forefoot, midfoot and hindfoot regions ( < 0.05). There is a significant correlation between tissue hardness and PPP, and between tissue hardness and PTI in people with DPN. Plantar loading associated with daily activities plays a significant role on the plantar tissue hardness in people with DPN. The findings of this study contribute to further understand the relationship between increased plantar tissue hardness and high plantar pressure in people with diabetic peripheral neuropathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013892PMC
http://dx.doi.org/10.3389/fbioe.2022.836018DOI Listing

Publication Analysis

Top Keywords

tissue hardness
48
people dpn
36
plantar pressure
32
plantar tissue
24
plantar loading
20
loading group
20
plantar
19
peripheral neuropathy
16
tissue
13
hardness
12

Similar Publications

Introduction: In children, polymethylmethacrylate (PMMA) is a commonly used material for fabrication of dental prostheses, such as obturators, removable space maintainers, habit-breaking appliances, removable orthodontic appliances, and removable partial and complete dentures. Regular cleaning of such prostheses is vital for maintaining the health of the oral tissues as well as the longevity of the prosthesis. The chemical method of disinfection, using different chemical cleansers, is commonly used for cleaning a dental prosthesis.

View Article and Find Full Text PDF

This study investigated the effects of pulsed electric field (PEF) treatment on the peeling efficiency and textural properties of whiteleg shrimp (). Shrimp samples were treated at field strengths of 0, 1.0, 1.

View Article and Find Full Text PDF

Investigating the Reliability of Shore Hardness in the Design of Procedural Task Trainers.

Bioengineering (Basel)

January 2025

School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.

The haptic fidelity of biomimetic materials used in the design of procedural task trainers is of growing interest to the medical community. Shore hardness has been proposed as a method for assessing tissue biomechanics and replicating the results as a way to increase the fidelity of biomimetics to tissues. However, there is limited research on the reliability of human tissue measurements using Shore scales.

View Article and Find Full Text PDF

Starch has been recognized as a vital ingredient in surimi products due to its ability to absorb water, which reduces the deterioration of gels and water loss during freezing and thawing. However, it is essential to ascertain the role of starch in the formation of ice crystals and the texture of surimi gels. The impact of freeze-thaw cycles on the morphology and distribution of ice crystals, as well as the textural characteristics of gelatinized and ungelatinized starch-surimi gels was investigated.

View Article and Find Full Text PDF

The Aim Of The Study: Was to elaborate and assess biocompatible compositions based on oligocarbonate methacrylate filled with hydroxyapatite.

Materials And Methods: The manufacturing methods of the compositions are considered, and their polymerization ability, strength and elastic properties are evaluated.

Results: The highest values of hardness and elasticity were found in the composition containing 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!