The role of potassium channels on vasorelaxant effects of elabela in rat thoracic aorta.

Turk Gogus Kalp Damar Cerrahisi Derg

Department of Physiology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye.

Published: January 2022

Background: This study aims to investigate the roles of potassium channel subtypes in the vasorelaxant effect mechanism of elabela, which is a recently discovered endogenous apelin receptor ligand.

Methods: The vascular rings (4-mm) obtained from the thoracic aortas of 20 male Wistar Albino rats were placed into the isolated tissue bath system. The resting tension was set to 1 g. The aortic rings were contracted with 10-5 molar phenylephrine after the equilibration period (90 min). Elabela was applied cumulatively (10-10-10-6 molar) to the aortic rings in the plateau phase. The experimental protocol was repeated in the presence of specific potassium channel subtype inhibitors to determine the role of potassium channels in the vasorelaxant effect mechanism of elabela.

Results: Elabela induced a concentration-dependent vasorelaxation (p<0.001). The maximum relaxation level was approximately 51% according to phenylephrineinduced contraction. Vasorelaxant effect level of elabela statistically significantly decreased after removal of the endothelium (p<0.05). Tetraethylammonium (1 milimolar), 4-Aminopyridine (1 milimolar), glyburide (10 micromolar), and barium chloride (30 micromolar) statistically significantly decreased the vasorelaxant effect level of elabela (p<0.001, p<0.001, p<0.01, and p<0.05 respectively). However, anandamide (10 micromolar) and apamin (100 nanomolar) did not statistically significantly change the vasorelaxant effect level of elabela.

Conclusion: Our results suggest that large-conductance calciumactivated, voltage-gated, adenosine triphosphate-sensitive, and inward-rectifier potassium channels are involved in the vasorelaxant effect mechanism of elabela in the rat thoracic aorta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990140PMC
http://dx.doi.org/10.5606/tgkdc.dergisi.2022.22756DOI Listing

Publication Analysis

Top Keywords

role potassium
8
potassium channels
8
channels vasorelaxant
8
potassium channel
8
vasorelaxant mechanism
8
aortic rings
8
vasorelaxant effects
4
elabela
4
effects elabela
4
elabela rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!