Although extensive use of antiretroviral therapy (ART) has made great progress in controlling HIV replication and improving CD4 T cell recovery, the immune reconstitution remained insufficient in some patients, who were defined as poor immunological responders (PIRs). These PIRs were at a high risk of AIDS-related and non-AIDS complications, resulting in higher morbidity and mortality rate. Thus, it is a major challenge and urgently needed to distinguish PIRs early and improve their immune function in time. Immune activation is a key factor that leads to impaired immune reconstitution in people living with HIV (PLWH) who are receiving effective ART. Double negative T cells (DNT) were reported to associate with the control of immune activation during HIV infection. However, the precise mechanisms by which DNT cells exerted their suppressive capacity during HIV infection remained puzzled. CD73, both a soluble and a membrane-bound form, display immunosuppressive effects through producing adenosine (ADO). Thus, whether DNT cells expressed CD73 and mediated immune suppression through CD73-ADO pathway needs to be investigated. Here, we found a significant downregulation of CD73 expression on DNT cells in treatment-naïve PLWH (TNs) compared to healthy controls, accompanied with increased concentration of sCD73 in plasma. Both the frequency of CD73 DNT cells and the level of plasma sCD73 recovered after ART treatment. However, PIRs showed decreased percentage of CD73 DNT cells compared to immunological responders (IRs). The frequency of CD73 DNT cells was positively correlated with CD4 T cell count and CD4/CD8 ratio, and negatively correlated with immune activation in PLWH. The level of sCD73 also showed a negative correlation to CD4 T cell count and CD4/CD8 ratio. More importantly, in the present cohort, a higher level of sCD73 at the time of initiating ART could predict poor immune reconstitution in PLWH after long-term ART. Our findings highlighted the importance of CD73 DNT cells and sCD73 in the disease progression and immune reconstitution of PLWH, and provided evidences for sCD73 as a potential biomarker of predicting immune recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013806PMC
http://dx.doi.org/10.3389/fimmu.2022.869286DOI Listing

Publication Analysis

Top Keywords

dnt cells
28
immune reconstitution
20
cd73 dnt
16
cd4 cell
12
immune activation
12
immune
11
cells
9
cd73
8
poor immune
8
antiretroviral therapy
8

Similar Publications

The tumor immune microenvironment (TiME) of human central nervous system (CNS) tumors remains to be comprehensively deciphered. Here, we employed flow cytometry and RNA sequencing analysis for a deep data-driven dissection of a diverse TiME and to uncover noncanonical immune cell types in human CNS tumors by using seven tumors from five patients. Myeloid subsets comprised classical microglia, monocyte-derived macrophages, neutrophils, and two noncanonical myeloid subsets: CD3 myeloids and CD19 myeloids.

View Article and Find Full Text PDF

CD36-mediated uptake of oxidized LDL induces double-negative regulatory T cell ferroptosis in metabolic dysfunction-associated steatotic liver disease.

Metabolism

December 2024

Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China. Electronic address:

Background: Metabolic alterations have been shown to instigate liver inflammation in metabolic dysfunction-associated steatotic liver disease (MASLD), but the underlying mechanism is not fully elucidated. During MASLD progression, intrahepatic CD3TCRαβCD4CD8 double negative T regulatory cells (DNT) decrease cell survival and immunosuppressive function, leading to aggravated liver inflammation. In this study, we aim to reveal the underlying mechanisms that cause changes in DNT during MASLD progression.

View Article and Find Full Text PDF

Single-Cell Transcriptome Reveals the Heterogeneity of T Cells in Mice with Systemic Lupus Erythematosus and Neuronal Inflammation.

J Inflamm Res

December 2024

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.

Introduction: Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes.

View Article and Find Full Text PDF

Application of deep learning models on single-cell RNA sequencing analysis uncovers novel markers of double negative T cells.

Sci Rep

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.

Double negative T (DNT) cells are a unique subset of CD3 + TCRαβ + T lymphocytes that lack CD4, CD8, or NK1.1 expression and constitute 3-5% of the total T cell population in C57BL/6 mice. They have increasingly gained recognition for their novel roles in the immune system, especially under autoimmune conditions.

View Article and Find Full Text PDF

Objectives: To evaluate the manufacturability, efficacy and safety of allogeneic CD19 chimeric antigen receptor double-negative T cells (CD19-CAR-DNTs) as an off-the-shelf therapeutic cell product.

Methods: A membrane proteome array was used to assess the off-target binding of CD19-CAR. DNTs derived from healthy donors were transduced with lentiviral vectors encoding the CD19-CAR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!