Cover crops are known to alleviate the adverse effects of continuous cropping by influencing plant health and changing host fungal-microbiome structures. However, insight into the shift of rhizomicrobiota composition and their effects on plant growth performance and resistance mechanism is still limited under plastic shed cultivation (PSC). Four leafy vegetable rotations namely spinach rotation (SR), non-heading Chinese cabbage rotation (NCCR), coriander rotation (CR), and leafy lettuce rotation (LLR) were used as cover crops in 7-years of continuous cucumber planted soil (CC). Their ecological impacts were studied for plant growth performance, replant diseases incidence rate, and rhizosphere fungal microbiome. Compared to CC, SR showed a highly suppressive effect on fusarium wilt, i.e., by 13.2% in the spring season, while NCCR decreased the root-knot nematode incidence rate by 8.9% in the autumn season. Such protective effects caused a significant increase of shoot and fruit biomass and thus sustained the fruit quality of cucumber. High-throughput sequencing revealed that the CR, SR, and NCCR treatments altered the fungal community composition by increasing the abundance of the beneficial fungal genera, decreasing pathogenic taxa, and fostering the saprotrophic and symbiotic functions. However, the relative abundance of most of the potentially pathogenic fungal genera increased in CC and LLR cropping. There were 8 potential pathogens and 10 beneficial or biocontrol fungi characterized. It was found that , , , , , and were the putative biocontrol microbes that positively affected plant growth and replanted diseases inhibition. The characterized , , , , and were the key pathogenic fungal agents found to be negatively associated with plant growth characters, suggesting that rhizomicrobiome may play an important role in the occurrence of disease incidence of cucumber plants. Considering the ecological potential of some cover plants, this study suggested that rotation with spinach, non-heading Chinese cabbage, or coriander can enhance rhizosphere immunity by triggering the development of plant-protective fungal microbiomes under plastic shed cucumber cultivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015784PMC
http://dx.doi.org/10.3389/fmicb.2022.697815DOI Listing

Publication Analysis

Top Keywords

plant growth
16
fusarium wilt
8
incidence cucumber
8
rhizosphere fungal
8
fungal microbiome
8
cover crops
8
growth performance
8
non-heading chinese
8
chinese cabbage
8
incidence rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!