AI Article Synopsis

  • This study investigates the molecular characteristics of fluoroquinolone-resistant and multidrug-resistant tuberculosis (TB) strains in Tianjin, China, using whole-genome sequencing to better understand drug resistance.
  • Researchers isolated 21 strains from sputum samples and identified mutations in 15 genome regions linked to drug resistance, achieving high sensitivity rates for predicting resistance to various anti-TB drugs compared to traditional testing methods.
  • The findings suggest that while genome sequencing effectively predicts drug resistance in most cases, some resistant isolates may employ different mechanisms not explained by the identified mutations.

Article Abstract

Objective: Tuberculosis (TB) caused by remains a global concern. This study aimed to determine the molecular characteristics of fluoroquinolone-resistant and multidrug-resistant strains using whole-genome sequencing to predict drug resistance in in Tianjin, China, which has not been established previously.

Methods: Twenty-one fluoroquinolone-resistant and multidrug-resistant strains were isolated from sputum samples. Phenotypic drug resistance against 12 anti-tuberculosis drugs was determined using drug susceptibility testing. Whole-genome sequencing was performed to predict drug resistance in based on genome regions associated with drug resistance. The sensitivity of whole-genome sequencing for predicting drug resistance was calculated based on phenotypic drug susceptibility testing information.

Results: Among the 21 isolates, mutations in 15 genome regions associated with drug resistance, including for rifampicin; and promoter for isoniazid; and for ofloxacin and moxifloxacin; for streptomycin; for streptomycin, amikacin, kanamycin and capreomycin; and for pyrazinamide; , and for ethambutol; for protionamide; and for para-aminosalicylic acid, were detected. Compared with traditional drug susceptibility testing results, the sensitivities for whole-genome sequencing of rifampin, isoniazid, ofloxacin, moxifloxacin, streptomycin, ethambutol, pyrazinamide, kanamycin, and amikacin resistance were 100%, 90.48%, 95.24%, 92.86%, 95.27%, 85.71%, 66.67%, 50%, and 50%, respectively. The sensitivities for whole-genome sequencing of capreomycin, protionamide, and para-aminosalicylic acid were not calculated because only one isolate showed phenotypic drug resistance. Mutations determined in drug susceptibility-associated genes can explain phenotypic drug resistance in most isolates. Notably, these mutations were absent in certain drug-resistant isolates, indicating other drug resistance mechanisms.

Conclusion: Whole-genome sequencing represents an effective diagnostic tool for fluoroquinolone-resistant and multidrug-resistant TB though it has some obstacles. Whole-genome sequencing should be used to predict drug resistance prior to performing traditional phenotypic drug susceptibility testing in Tianjin, China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013706PMC
http://dx.doi.org/10.2147/IDR.S361635DOI Listing

Publication Analysis

Top Keywords

drug resistance
40
whole-genome sequencing
32
phenotypic drug
20
fluoroquinolone-resistant multidrug-resistant
16
drug susceptibility
16
susceptibility testing
16
drug
15
tianjin china
12
predict drug
12
resistance
11

Similar Publications

BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells.

View Article and Find Full Text PDF

An effective drug-free hydrogel for accelerating the whole healing process of bacteria-infected wounds.

Biomater Sci

December 2024

Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.

Wound healing is a dynamic and complex process involving hemostasis, inflammation, fibroblast proliferation, and tissue remodeling. This process is highly susceptible to bacterial infection, which often leads to impaired and delayed wound repair. While antibiotic therapy remains the primary clinical approach for treating bacteria-infected wounds, its widespread use poses a significant risk of developing bacterial resistance.

View Article and Find Full Text PDF

Antifungal Properties of Polycephalomyces nipponicus (Ascomycetes) against Candida albicans: Potential for Novel Therapeutic Development.

Int J Med Mushrooms

December 2024

Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand; Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand.

Candida albicans has the potential to turn pathogenic and cause mild to severe infections, particularly in people with weakened immune systems. Novel therapeutics are required due to its morphological alterations, biofilm development, and resistance to antifungal drugs. Polycephalomyces nipponicus, a traditional East Asian medicinal fungus, has shown potential as an antifungal agent.

View Article and Find Full Text PDF

A Comprehensive Review Highlighting the Prospects of Phytonutrient Berberine as an Anticancer Agent.

J Biochem Mol Toxicol

January 2025

Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden.

Berberine, an isoquinoline alkaloid derived from various medicinal plants, emerges as a potential therapeutic agent against diverse human diseases. It has particularly shown notable anticancer efficacy against breast, colorectal, lung, prostate, and liver cancer. Berberine results in inhibition of cancer cell proliferation, induction of apoptosis, and suppressing angiogenesis, positioning it as a versatile, multitargeted therapeutic tool against cancer.

View Article and Find Full Text PDF

The proliferation of tumors is not merely self-regulated by the cancer cells but is also intrinsically connected to the tumor microenvironment (TME). Within this complex TME, cancer-associated fibroblasts (CAFs) are pivotal in the modulation of tumor onset and progression. Rich signaling interactions exist between CAFs and tumor cells, which are crucial for tumor regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: