Modeling of lophotrichous bacteria reveals key factors for swimming reorientation.

Sci Rep

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.

Published: April 2022

Lophotrichous bacteria swim through fluid by rotating their flagellar bundle extended collectively from one pole of the cell body. Cells experience modes of motility such as push, pull, and wrapping, accompanied by pauses of motor rotation in between. We present a mathematical model of a lophotrichous bacterium and investigate the hydrodynamic interaction of cells to understand their swimming mechanism. We classify the swimming modes which vary depending on the bending modulus of the hook and the magnitude of applied torques on the motor. Given the hook's bending modulus, we find that there exist corresponding critical thresholds of the magnitude of applied torques that separate wrapping from pull in CW motor rotation, and overwhirling from push in CCW motor rotation, respectively. We also investigate reoriented directions of cells in three-dimensional perspectives as the cell experiences different series of swimming modes. Our simulations show that the transition from a wrapping mode to a push mode and pauses in between are key factors to determine a new path and that the reoriented direction depends upon the start time and duration of the pauses. It is also shown that the wrapping mode may help a cell to escape from the region where the cell is trapped near a wall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021275PMC
http://dx.doi.org/10.1038/s41598-022-09823-4DOI Listing

Publication Analysis

Top Keywords

motor rotation
12
lophotrichous bacteria
8
key factors
8
swimming modes
8
bending modulus
8
magnitude applied
8
applied torques
8
wrapping mode
8
modeling lophotrichous
4
bacteria reveals
4

Similar Publications

Motor variability regulation analysis in trampolinists.

J Biomech

January 2025

Laboratoire de Simulation et Modélisation du Mouvement, Université de Montréal, Montréal, QC, Canada. Electronic address:

In trampolining, optimizing body orientation during landing reduces injury risk and enhances performance. As trampolinists are subject to motor variability, anticipatory inflight corrections are necessary to regulate their body orientation before landing. We investigated the evolution of a) body orientation and b) limb position (i.

View Article and Find Full Text PDF

Motor Learning Deficits in a Neonatal Mouse Model of Hypoxic-Ischemic Injury.

Children (Basel)

December 2024

Department of Pediatrics, Division of Neonatology, University of Virginia, Charlottesville, VA 22908, USA.

Background/objectives: Motor deficits following neonatal brain injury, from cerebral palsy to subtle deficits in motor planning, are common yet underreported. Rodent models of motor deficits in neonatal hypoxia-ischemia (HI) allow improved understanding of the underlying mechanisms and neuroprotective strategies. Our goal was to test motor performance and learning in a mouse model of neonatal HI.

View Article and Find Full Text PDF

Optimizing TMS dosimetry: evaluating the effective electric field as a novel metric.

Phys Med Biol

January 2025

Department of Information Engineering, Electronics and Telecommunications (DIET) , University of Rome La Sapienza, Via Eudossiana 18, Rome, 00184, ITALY.

Objective: This study introduces the effective electric field (Eeff) as a novel observable for transcranial magnetic stimulation (TMS) numerical dosimetry. Eeff represents the electric field component aligned with the local orientation of cortical and white matter neuronal elements. To assess the utility of Eeff as a predictive measure for TMS outcomes, we evaluated its correlation with TMS induced muscle responses and compared it against conventional observables, including the electric (E-)field magnitude, and its components normal and tangential to the cortical surface.

View Article and Find Full Text PDF

Background: Decoding motor intentions from electroencephalogram (EEG) signals is a critical component of motor imagery-based brain-computer interface (MI-BCIs). In traditional EEG signal classification, effectively utilizing the valuable information contained within the electroencephalogram is crucial.

Objectives: To further optimize the use of information from various domains, we propose a novel framework based on multi-domain feature rotation transformation and stacking ensemble for classifying MI tasks.

View Article and Find Full Text PDF

Motor imagery includes visual imagery and kinesthetic imagery, which are two strategies that exist for mental rotation and are currently widely studied. However, different mental rotation tests can lead to different strategic performances. There are also many research results where two different strategies appear simultaneously under the same task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!