The interaction between a cell and its environment shapes fundamental intracellular processes such as cellular metabolism. In most cases growth rate is treated as a proximal metric for understanding the cellular metabolic status. However, changes in growth rate might not reflect metabolic variations in individuals responding to environmental fluctuations. Here we use single-cell microfluidics-microscopy combined with transcriptomics, proteomics and mathematical modelling to quantify the accumulation of glucose within Escherichia coli cells. In contrast to the current consensus, we reveal that environmental conditions which are comparatively unfavourable for growth, where both nutrients and salinity are depleted, increase glucose accumulation rates in individual bacteria and population subsets. We find that these changes in metabolic function are underpinned by variations at the translational and posttranslational level but not at the transcriptional level and are not dictated by changes in cell size. The metabolic response-characteristics identified greatly advance our fundamental understanding of the interactions between bacteria and their environment and have important ramifications when investigating cellular processes where salinity plays an important role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021252 | PMC |
http://dx.doi.org/10.1038/s42003-022-03336-6 | DOI Listing |
Nucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.
Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Neonatology, Faculty of Medicine, Ludwik Rydgier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Ujejskiego 75, 85-168 Bydgoszcz, Poland.
Neonatal sepsis, a severe infection in newborns, remains one of the leading causes of morbidity and mortality among preterm infants. This study aimed to investigate the distribution of pathogens responsible for early-onset sepsis (EOS) and late-onset sepsis (LOS), the annual variability of pathogens responsible for each type of infection, and potential trends in their profiles in preterm infants from a tertiary care neonatal intensive care unit over a ten-year period. We analyzed 177 episodes of confirmed bloodstream infection between 1 January 2014 and 31 December 2023.
View Article and Find Full Text PDFFoods
December 2024
Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Universidad de Extremadura, 10003 Cáceres, Spain.
Food preservation techniques changed during the industrial revolution, as safer techniques were developed and democratized. However, one of the simplest techniques, adding salt, is still employed in a wide variety of products, not only as a flavor enhancer but as a method to allow for the controlled fermentation of products such as fruits. The objective of the present study consists of evaluating the quality of different salt-reduced fermented fruits through the application of the lactic acid bacteria (LAB) and vacuum, as well as assessing the LAB as a preventive measure against O157:H7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!