With increasing numbers of bispecific antibodies (BsAbs) and multispecific products entering the clinic, recent data highlight immunogenicity as an emerging challenge in the development of such novel biologics. This review focuses on the immunogenicity risk assessment (IgRA) of BsAb-based immunotherapies for cancer, highlighting several risk factors that need to be considered. These include the novel scaffolds consisting of bioengineered sequences, the potentially synergistic immunomodulating mechanisms of action (MOAs) from different domains of the BsAb, as well as several other product-related and patient-related factors. In addition, the clinical relevance of anti-drug antibodies (ADAs) against selected BsAbs developed as anticancer agents is reviewed and the advances in our knowledge of tools and strategies for immunogenicity prediction, monitoring, and mitigation are discussed. It is critical to implement a drug-specific IgRA during the early development stage to guide ADA monitoring and risk management strategies. This IgRA may include a combination of several assessment tools to identify drug-specific risks as well as a proactive risk mitigation approach for candidate or format selection during the preclinical stage. The IgRA is an on-going process throughout clinical development. IgRA during the clinical stage may bridge the gap between preclinical immunogenicity prediction and clinical immunogenicity, and retrospectively guide optimization efforts for next-generation BsAbs. This iterative process throughout development may improve the reliability of the IgRA and enable the implementation of effective risk mitigation strategies, laying the foundation for improved clinical success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024276 | PMC |
http://dx.doi.org/10.1136/jitc-2021-004225 | DOI Listing |
Uncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics.
View Article and Find Full Text PDFVet Med Int
January 2025
Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines.
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.
View Article and Find Full Text PDFNat Commun
January 2025
Bioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research University, Paris, France.
Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.
View Article and Find Full Text PDFCell Biosci
January 2025
Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
Background: Altered metabolism has become an important characteristic of cancer, and acyl-CoA dehydrogenase short-chain (ACADS), a regulator of lipid synthesis, is involved in carcinogenesis-associated metabolic pathways. DNA methylation is an important mechanism for silencing ACADS in various malignancies. However, the specific role of ACADS in hepatocellular carcinoma (HCC) pathogenesis remains poorly understood.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
Purpose: Anti-programmed cell death 1 (PD1) is the first-choice treatment in patients with advanced cutaneous squamous cell carcinoma (cSCC), when curative options are unavailable. However, reliable biomarkers for patient selection are still lacking.
Experimental Design: In this translational study, clinical annotations, tissue and liquid biopsies were acquired to investigate the association between sustained objective responses and transcriptional profiles, immune cell dynamics in tumor tissue and peripheral blood samples, as well as circulating cytokine levels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!